
DL in Applied Mathematics

Lecture 1: Introduction of Neural Networks. Multy Layers of Neural
Networks and traing Data.

Marat Nurtas
PhD in Mathematical and Computer Modeling

Department of Mathematical and Computer Modeling
International Information Technology University, Almaty, Kazakhstan

• Introducing Neural Networks

• We begin with a general idea of what neural networks are and why you might be
interested in them. Neural networks, also called Artificial Neural Networks, are a type of
machine learning often conflated with deep learning.

Fig 1.01: Depicting the various fields of artificial intelligence and where they fit in overall.

• A Brief History

• Since the advent of computers, scientists have been formulating ways to
enable machines to take input and produce desired output for tasks like
classification and regression . Additionally, in general, there’s supervised
and unsupervised machine learning.

• The “normal” and “failure” labels are classifications or labels. You may
also see these referred to as targets or ground-truths while we fit a
machine learning algorithm. These targets are the classifications that are
the goal or target , known to be true and correct , for the algorithm to
learn.

• In addition to classification, there’s also regression, which is used to
predict numerical values, like stock prices. There’s also unsupervised
machine learning, where the machine finds structure in data without
knowing the labels/classes ahead of time.

• Neural networks were conceived in the 1940s, but figuring out how to train
them remained a mystery for 20 years. The concept of backpropagation
came in the 1960s, but neural networks still did not receive much attention
until they started winning competitions in 2016.

• Since then, neural networks have been on a meteoric rise due to their
sometimes seemingly magical ability to solve problems previously deemed
unsolvable, such as image captioning, language translation, audio and video
synthesis, and more.

• Currently, neural networks are the primary solution to most competitions
and challenging technological problems like self-driving cars, calculating risk,
detecting fraud, and early cancer detection, to name a few.

• What is a Neural Network?

• “Artificial” neural networks are inspired by the organic brain, translated to
the computer. It’s not a perfect comparison, but there are neurons,
activations, and lots of interconnectivity, even if the underlying processes
are quite different.

Fig 1.02: Comparing a biological neuron to an artificial neuron.

Fig 1.03: Example of a neural network with 3 hidden layers of 16 neurons each.

• The concept of weights and biases can be thought of as “knobs” that we can tune to
fit our model to data. In a neural network, we often have thousands or even
millions of these parameters tuned by the optimizer during training. Some may ask,
“why not just have biases or just weights?”

Fig 1.04: Graph of a single-input neuron’s output with a weight of 1, bias of 0 and input x .

• Adjusting the weight will impact the slope of the function:

Fig 1.05: Graph of a single-input neuron’s output with a weight of 2, bias of 0 and input x .

• As we increase the value of the weight, the slope will get steeper. If we
decrease the weight, the slope will decrease. If we negate the weight, the
slope turns to a negative:

Fig 1.06: Graph of a single-input neuron’s output with a weight of -0.70, bias of 0 and input x .

• The bias offsets the overall function. For example, with a weight of 1.0 and a
bias of 2.0:

Fig 1.07: Graph of a single-input neuron’s output with a weight of 1, bias of 2 and input x .

• As we increase the bias, the function output overall shifts upward. If we
decrease the bias, then the overall function output will move downward. For
example, with a negative bias:

Fig 1.08: Graph of a single-input neuron’s output with a weight of 1.0, bias of -0.70 and input x .

• In programming, an on-off switch as a function would be called a step
function because it looks like a step if we graph it.

Fig 1.09: Graph of a step function.

The formula for a single neuron might look something like:

output = sum (inputs * weights) + bias

We then usually apply an activation function to this output, noted by
activation() :

output = activation(output)

• While you can use a step function for your activation function, we tend to
use something slightly more advanced. Neural networks of today tend to
use more informative activation functions (rather than a step function),
such as the Rectified Linear (ReLU) activation function, which we will cover
in-depth in Lecture 4. Each neuron’s output could be a part of the ending
output layer, as well as the input to another layer of neurons.

• Example with 2 hidden layers of 4 neurons each.

Fig 1.10: Example basic neural network.

Fig 1.11 and Fig 1.12: Visual depiction of passing image data through a neural network, getting a classification

• When represented as one giant function, an example of a neural network’s
forward pass would be computed with:

Fig 1.13: Full formula for the forward pass of an example neural network model.

1 Mathematical Formulation
At the heart of this deep learning revolution are familiar concepts from applied
and computational mathematics; notably, in calculus, approximation theory,
optimization and linear algebra.

This lesson provides a very brief introduction to the basic ideas that underlie deep
learning from an applied mathematics perspective.

We focus on three fundamental questions:

• What is a deep neural network in Applied Mathematics?

• How is a network trained?

• What is the stochastic gradient method?

We illustrate the ideas with a short MATLAB and Python codes that sets up and
trains a network.

2 Example of an Artificial Neural Network
• This class takes a data fitting view of artificial neural networks. To be

concrete, consider the set of points shown in Figure 1.

Figure 1: Labeled data points in R2. Circles denote points in category A.

Crosses denote points in category B.

For example, the data may show oil drilling sites on a map, where category A
denotes a successful outcome. Can we use this data to categorize a newly
proposed drilling site? Our job is to construct a transformation that takes any
point in R2 and returns either a circle or a square.

We will base our network on the sigmoid function

which is illustrated in the upper half of Figure 2 over the interval .

• The sigmoid also has the convenient property that its derivative takes the
simple form

which is straightforward to verify.

10 10x−

Figure 2: Upper: sigmoid function (1). Lower: sigmoid with shifted and scaled
input.

• The lower plot in Figure 2 shows . The factor 3 has sharpened the
changeover and the shift -5 has altered its location. To keep our notation
manageable, we need to interpret the sigmoid function in a factorized sense.
For is defined by applying the sigmoid function in the
obvious componentwise manner, so that

With this notation, we can set up layers of neurons.

• Introducing some mathematics, if the real numbers produced by the neurons
in one layer are collected into a vector, a, then the vector of outputs from
the next layer has the form

(3(5))x −

, :m m mz R R R →

Here, W is matrix and b is a vector. We say that W contains the weights
and b contains the biases.

• To emphasize the role of the ith neuron in (3), we could pick out the ith
component as

where the sum runs over all entries in a. Throughout this class, we will be

switching between the vectorized and componentwise viewpoints to strike a
balance between clarity and brevity.

• Figure 3 represents an artificial neural network with four layers. We will
apply this form of network to the problem defined by Figure 1.

Since the input data has the form the weights and biases for layer two
may be represented by a matrix and a vector respectively.

The output from layer two then has the form

Figure 3: A network with four layers.

Weights and biases for layer three may be represented by a matrix
and a vector respectively. The output from layer three then has the
form

The fourth (output) layer: , respect respectively. The output from
layer four, and hence from the overall network, has the form

The expression (4) defines a function in terms of its 23
parameters-the entries in the weight matrices and bias vectors.

• Recall that our aim is to produce a classifier based on the data in Figure 1.

We will require to be close to for data points in category A and close
to for data points in category B. Then, given a new point it would
be reasonable to classify it according to the largest component of that is,
category A If and category B if with some rule to
break ties.

• Denoting the ten data points in Figure 1 by we use for the
target output; that is,

Figure 4: Visualization of output from an artificial neural network applied to
the data in Figure 1.

Our cost function then takes the form

Choosing the weights and biases in a way that minimizes the cost function

is refered to as training the network.

• For the data in Figure 1, we used the MATLAB optimization toolbox to
minimize the cost function (6) over the 23 parameters defining

More precisely, we used the nonlinear least-squares

solver lsqnonlin. For the trained network, Figure 4 shows the boundary where

So, with this approach, any point in the shaded region would

be assigned to category A and any point in the unshaded region to category B.

• Figure 5 shows how the network responds to additional training data. Here

we added one further category B point, indicated by the extra cross at (0.3;
0.7), and re-ran the optimization routine.

Figure 5: Repeat of the experiment in Figure 4 with an additional data
point.

Indeed, some experimentation with the location of the data points in Figure
4 and with the choice of initial guess for the weights and biases makes it
clear that lsqnonlin, with its default settings, cannot always find an
acceptable solution.

3 The General Set-up

Suppose that layer , for = 1, 2, 3, …, contains neurons. So is the
dimension of input data. Overall, the network maps from We use

to denote the matrix of weights at layer More precisely, is the

weight that neuron j at layer applies to the output from neuron k at layer -1.

Similarly, is the vector of biases for layer , so neuron j at layer uses the

bias

• Given an input we may then neatly summarize the action of the
network by letting denote the output, or activation, from neuron j at layer
. So, we have

l L ln 1n

l l

l l

l

l

Now suppose we have N pieces of data, or training points, in

for which there are given target outputs Generalizing (6),

the quadratic cost function that we wish to minimize has the form

where, to keep notation under control, we have not explicitly indicated
that Cost is a function of all the weights and biases.

Thank you for attention!

	Слайд 1, DL in Applied Mathematics
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15
	Слайд 16
	Слайд 17, 1 Mathematical Formulation
	Слайд 18, 2 Example of an Artificial Neural Network
	Слайд 19
	Слайд 20
	Слайд 21
	Слайд 22
	Слайд 23
	Слайд 24
	Слайд 25
	Слайд 26
	Слайд 27
	Слайд 28
	Слайд 29
	Слайд 30
	Слайд 31
	Слайд 32

