
DL in Applied Mathematics

Lecture 4: Stochastic Gradient Descent (SGD)

SGD is a popular optimization algorithm used in machine learning and deep
learning for minimizing a loss function, which measures the difference between the
observed and predicted values.

Unlike traditional Gradient Descent, which computes the gradient of the loss
function using the entire dataset to update model parameters in each iteration, SGD
updates the parameters using only a single sample (or a small batch of samples) at each
iteration. This approach makes SGD much faster and more scalable to large datasets.

Basic Algorithm

• Initialize the parameters: Start with initial values for the parameters of the model
you are trying to optimize. These could be coefficients in linear regression or
weights in a neural network.

• Loop until convergence: Repeat the following steps until the parameters converge
to their optimal values or until a specified number of iterations is reached:

• a. Select a sample: Randomly pick a single data point (or a small batch of data
points) from the training dataset.

• b. Compute the gradient: Calculate the gradient of the loss function with respect to
each parameter, but only for the selected sample(s). The gradient is a vector that
points in the direction of the steepest increase of the loss function.

• c. Update the parameters: Adjust the parameters in the opposite direction of the
gradient by a small step. The size of the step is determined by the learning rate, a
hyperparameter that controls how much we adjust the parameters in response to
the estimated error each time the parameters are updated.

• Mathematical Formulation

Given a loss function L and a learning rate η, the parameter update rule
for SGD can be expressed as:

()() (); ,i iL x y = −

where θ represents the parameters of the model,

(x(i),y(i)) is a randomly selected sample from the dataset,

∇θL(θ;x(i),y(i)) is the gradient of the loss function with respect to the
parameters for that sample.

Advantages and Disadvantages

Advantages:

• Efficiency: SGD is computationally much faster than full-batch gradient
descent, especially for large datasets.

• Online Learning: It can be used for online learning, where the model needs
to be updated as new data arrives.

• Escape Local Minima: The inherent noise in the gradient estimation due to
sampling can help the algorithm escape local minima.

Disadvantages:

• Variance: The stochastic nature of the algorithm can lead to high variance
in the parameter updates, causing the objective function to fluctuate
heavily.

• Hyperparameter Tuning: The learning rate and batch size are critical
hyperparameters that need careful tuning.

• Convergence: The algorithm may not converge to the exact minimum but
will oscillate in a region around the minimum.

Modifications and Improvements

Several variants and improvements of SGD aim to reduce its variance
and improve convergence rates, including:

• Momentum: Adds a fraction of the previous update to the current update
to smooth out the variations.

• Adagrad, RMSprop, Adam: These algorithms adapt the learning rate during
training to adjust the amount of update for each parameter.

• SGD and its variants are foundational algorithms in the field of machine
learning and are crucial for training various models, from simple linear
regressors to complex neural networks.

Stochastic Gradient
In previous lectures, we saw that training a network corresponds to choosing the
parameters, that is, the weights and biases, that minimize the cost function.

The weights and biases take the form of matrices and vectors, but at this stage it is
convenient to imagine them stored as a single vector that we call 𝜌

The example in Figure 3 has a total of 23
weights and biases. So, in that case,𝑝 ∈ ℝ23.

Generally, we will suppose 𝑝 ∈ ℝ𝑠, and write
the cost function in (9) as Cost(𝑝) to
emphasize its dependence on the
parameters. So Cost : ℝ𝑠 → ℝ

We now introduce a classical method in optimization that is often referred to as
steepest descent or gradient descent. The method proceeds iteratively, computing a
sequence of vectors in ℝ𝑠 with the aim of converging to a vector that minimizes the
cost function. Suppose that our current vector is 𝑝.

How should we choose a perturbation, Δ𝑝, so that the next vector, 𝑝 + Δ𝑝, represents
an improvement?

If Δ𝑝 is small, then ignoring terms of order Δ𝑝
2

, a Taylor series expansion gives

Here 𝜕 𝐶os𝑡 Τ𝑝 𝜕 𝑝𝑟 denotes the partial derivative of the cost function with respect
to the 𝑟th parameter.

Then (10) becomes

Our aim is to reduce the value of the cost function. The relation (11) motivates the
idea of choosing Δ𝑝 to make ∇Cost 𝑝 𝑇Δ𝑝 as negative as possible.

We can address this problem via the Cauchy–Schwarz inequality, which states that
for any 𝑓, 𝑔 ∈ ℝ𝑆 , we have , which happens when 𝑓 = −𝑔.

For convenience, we will let 𝛻 𝐶os𝑡 𝑝 ∈ ℝ𝑠denote the vector of partial
derivatives, known as the gradient, so that

This leads to the update

Here 𝜂 is small stepsize that, in this context, is known as the learning rate. This
equation defines the steepest descent method. We choose an initial vector and
iterate with (12) until some stopping criterion has been met, or until the number of
iterations has exceeded the computational budget.

Hence, based on (11), we should choose Δ𝑝 to lie in the direction −∇ Cost 𝑝 .
Keeping in mind that (11) is an approximation that is relevant only for small Δ𝑝 , we
will limit ourselves to a small step in that direction.

Our cost function (9) involves a sum of individual terms that runs over the training
data. It follows that the partial derivative ∇Cost(𝑝) is a sum over the training data of
individual partial derivatives. More precisely, let

Then, from (9),

 When we have a large number of parameters and a large number of training
points, computing the gradient vector (14) at every iteration of the steepest descent
method (12) can be prohibitively expensive. A much cheaper alternative is to replace
the mean of the individual gradients over all training points by the gradient at a single,
randomly chosen, training point.

This leads to the simplest form of what is called the stochastic gradient method. A
single step may be summarized as

1. Choose an integer ⅈ uniformly at random from {1, 2, 3, . . . , N}.

2. Update

In words, at each step, the stochastic gradient method uses one randomly chosen
training point to represent the full training set. As the iteration proceeds, the
method sees more training points.
 So there is some hope that this dramatic reduction in cost-per-iteration will be
worthwhile overall. We note that, even for very small η , the update (15) is not
guaranteed to reduce the overall cost function—we have traded the mean for a
single sample. Hence, although the phrase stochastic gradient descent is widely
used, we prefer to use stochastic gradient.

The version of the stochastic gradient method that we introduced in (15) is the
simplest from a large range of possibilities. In particular, the index ⅈ in (15) was
chosen by sampling with replacement—after using a training point, it is returned to
the training set and is just as likely as any other point to be chosen at the next step.

An alternative is to sample without replacement; that is, to cycle through each of
the N training points in a random order. Performing N steps in this manner, refered
to as completing an epoch, may be summarized as follows:

1. Shuffle the integers {1, 2, 3, . . . , N} into a new order, {k1, k2, k3, . . . , kN }.

2. for ⅈ = 1 upto N, update

If we regard the stochastic gradient method as approximating the mean over all
training points in (14) by a single sample, then it is natural to consider a
compromise where we use a small sample average. For some 𝑚 ≪ 𝑁 we could
take steps of the following form.

1. Choose m integers, 𝑘1, 𝑘2, . . . , 𝑘𝑚, uniformly at random from {1, 2, 3, . . . , N}.

2. Update

In this iteration, the set 𝑥 𝑘𝑖
ⅈ=1

𝑛
is known as a mini-batch. There is a without

replacement alternative where, assuming 𝑁 = 𝑘𝑚 for some K , we split the
training set randomly into K distinct mini-batches and cycle through them.

Because the stochastic gradient method is usually implemented within the
context of a very large scale computation, algorithmic choices such as minibatch
size and the form of randomization are often driven by the requirements of high
performance computing architectures.

 Also, it is, of course, possible to vary these choices, along with others, such as
the learning rate, dynamically as the training progresses in an attempt to
accelerate convergence.

 We are now in a position to apply the stochastic gradient method in order to
train an artificial neural network.

Thank you for attention!

	Слайд 1
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5
	Слайд 6
	Слайд 7, Stochastic Gradient
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15
	Слайд 16

