
DL in Applied Mathematics

Lecture 4: Stochastic Gradient Descent (SGD)

SGD is a popular optimization algorithm used in machine learning and deep
learning for minimizing a loss function, which measures the difference between the
observed and predicted values.

Unlike traditional Gradient Descent, which computes the gradient of the loss
function using the entire dataset to update model parameters in each iteration, SGD
updates the parameters using only a single sample (or a small batch of samples) at each
iteration. This approach makes SGD much faster and more scalable to large datasets.



Basic Algorithm

• Initialize the parameters: Start with initial values for the parameters of the model 
you are trying to optimize. These could be coefficients in linear regression or 
weights in a neural network.

• Loop until convergence: Repeat the following steps until the parameters converge 
to their optimal values or until a specified number of iterations is reached:

• a. Select a sample: Randomly pick a single data point (or a small batch of data 
points) from the training dataset.

• b. Compute the gradient: Calculate the gradient of the loss function with respect to 
each parameter, but only for the selected sample(s). The gradient is a vector that 
points in the direction of the steepest increase of the loss function.

• c. Update the parameters: Adjust the parameters in the opposite direction of the 
gradient by a small step. The size of the step is determined by the learning rate, a 
hyperparameter that controls how much we adjust the parameters in response to 
the estimated error each time the parameters are updated.



• Mathematical Formulation

Given a loss function L and a learning rate η, the parameter update rule 
for SGD can be expressed as:
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where θ represents the parameters of the model, 

(x(i),y(i)) is a randomly selected sample from the dataset, 

∇θL(θ;x(i),y(i)) is the gradient of the loss function with respect to the
parameters for that sample.



Advantages and Disadvantages

Advantages:

• Efficiency: SGD is computationally much faster than full-batch gradient 
descent, especially for large datasets.

• Online Learning: It can be used for online learning, where the model needs 
to be updated as new data arrives.

• Escape Local Minima: The inherent noise in the gradient estimation due to 
sampling can help the algorithm escape local minima.



Disadvantages:

• Variance: The stochastic nature of the algorithm can lead to high variance 
in the parameter updates, causing the objective function to fluctuate 
heavily.

• Hyperparameter Tuning: The learning rate and batch size are critical 
hyperparameters that need careful tuning.

• Convergence: The algorithm may not converge to the exact minimum but 
will oscillate in a region around the minimum.



Modifications and Improvements

Several variants and improvements of SGD aim to reduce its variance 
and improve convergence rates, including:

• Momentum: Adds a fraction of the previous update to the current update 
to smooth out the variations.

• Adagrad, RMSprop, Adam: These algorithms adapt the learning rate during 
training to adjust the amount of update for each parameter.

• SGD and its variants are foundational algorithms in the field of machine 
learning and are crucial for training various models, from simple linear 
regressors to complex neural networks.



Stochastic Gradient 
In previous lectures, we saw that training a network corresponds to choosing the 
parameters, that is, the weights and biases, that minimize the cost function. 

The weights and biases take the form of matrices and vectors, but at this stage it is 
convenient to imagine them stored as a single vector that we call 𝜌

The example in Figure 3 has a total of 23 
weights and biases. So, in that case,𝑝 ∈ ℝ23.

Generally, we will suppose 𝑝 ∈ ℝ𝑠, and write 
the cost function in (9) as Cost(𝑝) to 
emphasize its dependence on the 
parameters. So Cost : ℝ𝑠 → ℝ



We now introduce a classical method in optimization that is often referred to as 
steepest descent or gradient descent. The method proceeds iteratively, computing a 
sequence of vectors in ℝ𝑠 with the aim of converging to a vector that minimizes the 
cost function. Suppose that our current vector is 𝑝.

How should we choose a perturbation, Δ𝑝, so that the next vector, 𝑝 + Δ𝑝, represents 
an improvement?

If Δ𝑝 is small, then ignoring terms of order Δ𝑝
2

, a Taylor series expansion gives 

Here 𝜕 𝐶os𝑡 Τ𝑝 𝜕 𝑝𝑟 denotes the partial derivative of the cost function with respect 
to the 𝑟th parameter. 



Then (10) becomes

Our aim is to reduce the value of the cost function. The relation (11) motivates the 
idea of choosing Δ𝑝 to make ∇Cost 𝑝 𝑇Δ𝑝 as negative as possible. 

We can address this problem via the Cauchy–Schwarz inequality, which states that 
for any 𝑓, 𝑔 ∈ ℝ𝑆 , we have                                     , which happens when 𝑓 = −𝑔. 

For convenience, we will let 𝛻 𝐶os𝑡 𝑝 ∈ ℝ𝑠denote the vector of partial 
derivatives, known as the gradient, so that



This leads to the update

Here 𝜂 is small stepsize that, in this context, is known as the learning rate. This 
equation defines the steepest descent method. We choose an initial vector and 
iterate with (12) until some stopping criterion has been met, or until the number of 
iterations has exceeded the computational budget.

Hence, based on (11), we should choose Δ𝑝 to lie in the direction −∇ Cost 𝑝  . 
Keeping in mind that (11) is an approximation that is relevant only for small Δ𝑝 , we 
will limit ourselves to a small step in that direction. 



Our cost function (9) involves a sum of individual terms that runs over the training 
data. It follows that the partial derivative ∇Cost(𝑝) is a sum over the training data of 
individual partial derivatives. More precisely, let 

                                          

Then, from (9),  

      When we have a large number of parameters and a large number of training 
points, computing the gradient vector (14) at every iteration of the steepest descent 
method (12) can be prohibitively expensive. A much cheaper alternative is to replace 
the mean of the individual gradients over all training points by the gradient at a single, 
randomly chosen, training point.



This leads to the simplest form of what is called the stochastic gradient method. A 
single step may be summarized as 

1. Choose an integer ⅈ uniformly at random from {1, 2, 3, . . . , N}. 

2. Update 

In words, at each step, the stochastic gradient method uses one randomly chosen 
training point to represent the full training set. As the iteration proceeds, the 
method sees more training points. 
   So there is some hope that this dramatic reduction in cost-per-iteration will be 
worthwhile overall. We note that, even for very small η , the update (15) is not 
guaranteed to reduce the overall cost function—we have traded the mean for a 
single sample. Hence, although the phrase stochastic gradient descent is widely 
used, we prefer to use stochastic gradient.



The version of the stochastic gradient method that we introduced in (15) is the 
simplest from a large range of possibilities. In particular, the index ⅈ in (15) was 
chosen by sampling with replacement—after using a training point, it is returned to 
the training set and is just as likely as any other point to be chosen at the next step. 

An alternative is to sample without replacement; that is, to cycle through each of 
the N training points in a random order. Performing N steps in this manner, refered
to as completing an epoch, may be summarized as follows:

1. Shuffle the integers {1, 2, 3, . . . , N} into a new order, {k1, k2, k3, . . . , kN }. 

2. for ⅈ = 1 upto N, update  



If we regard the stochastic gradient method as approximating the mean over all 
training points in (14) by a single sample, then it is natural to consider a 
compromise where we use a small sample average. For some 𝑚 ≪ 𝑁 we could 
take steps of the following form.

1. Choose m integers, 𝑘1, 𝑘2, . . . , 𝑘𝑚, uniformly at random from {1, 2, 3, . . . , N}. 

2. Update

In this iteration, the set 𝑥 𝑘𝑖
ⅈ=1

𝑛
is known as a mini-batch. There is a without 

replacement alternative where, assuming 𝑁 = 𝑘𝑚 for some K , we split the 
training set randomly into K distinct mini-batches and cycle through them.



Because the stochastic gradient method is usually implemented within the 
context of a very large scale computation, algorithmic choices such as minibatch 
size and the form of randomization are often driven by the requirements of high 
performance computing architectures. 

     Also, it is, of course, possible to vary these choices, along with others, such as 
the learning rate, dynamically as the training progresses in an attempt to 
accelerate convergence.

    We are now in a position to apply the stochastic gradient method in order to 
train an artificial neural network.



Thank you for attention!
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