
DL in Applied Mathematics
Lecture 5: Backpropagation

Backpropagation in neural networks is a fundamental algorithm used for training deep learning models.
It's essentially the backbone of learning in various types of neural networks including, but not limited to,

feedforward neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs).

The Concept of Backpropagation
Backpropagation, short for "backward propagation of errors," is a method used to calculate the gradient of

the loss function with respect to each weight in the network by applying the chain rule of calculus, moving backwards
through the layers. It consists of two main phases: the forward pass and the backward pass.

Forward Pass

Input Layer: The process begins by feeding the input data into the network.

Hidden Layers: The input data then propagates forward through the network’s hidden layers, where each neuron
applies a weighted sum on the inputs, followed by a non-linear activation function.

Output Layer: The final output is calculated and compared against the target value to compute the loss (or error).

Backward Pass
• Compute Gradient: The backpropagation algorithm then calculates the gradient of

the loss function with respect to each weight by propagating the loss backward
through the network layers. This involves applying the chain rule to find out how
much each weight contributed to the error.

• Update Weights: The computed gradients are then used to update the weights of
the network. This is usually done using an optimization algorithm like Gradient
Descent. The idea is to adjust each weight in the direction that most reduces the
loss.

Key Components
• Loss Function: Measures the difference between the network's prediction and the

actual target values. Common loss functions include Mean Squared Error (MSE) for
regression tasks and Cross-Entropy for classification tasks.

• Gradient Descent: An optimization algorithm used to minimize the loss function
by iteratively moving towards the minimum of the loss function.

• Learning Rate: A hyperparameter that controls how much we are adjusting the
weights of our network with respect to the loss gradient. Too small a learning rate
may result in a long training process, while too large a learning rate may lead to
overshooting the minimum.

Challenges and Solutions

• Vanishing/Exploding Gradients: As the error gradient is propagated back, it
can diminish exponentially (vanish) or increase exponentially (explode),
making it difficult for the model to learn. Techniques like normalization,
proper weight initialization, and architectures designed to mitigate these
issues (like LSTM units in RNNs) can help.

• Overfitting: This occurs when the model learns the noise in the training
data to the extent that it performs poorly on unseen data. Techniques such
as regularization, dropout, and early stopping are commonly used to
combat overfitting.

Backpropagation has been crucial for the advancement of deep
learning, enabling the training of deep neural networks that can learn from
complex data and perform tasks ranging from image recognition to natural
language processing.

Back Propagation. The problem statments

So we switch from the general vector of parameters, p, to the entries
in the weight matrices and bias vectors.

Our task is to compute partial derivatives of the cost function with
respect to each 𝜔𝑗𝑘

𝑙
 and 𝑏𝑗

𝑙
.

 We saw that the idea behind the stochastic gradient method is to
exploit the structure of the cost function: because

is a linear combination of individual terms that runs over the training
data the same is true of its partial derivatives.

We therefore focus our attention on computing those individual
partial derivatives.

Hence, for a fixed training point we regard 𝐶𝑥 𝑖 in (13)

as a function of the weights and biases. So we may drop the
dependence on 𝑥 ⅈ and simply write

We recall from (8)

that 𝑎 𝐿 is the output from the artificial neural network. The
dependence of C on the weights and biases arises only through 𝑎 𝐿 .

To derive worthwhile expressions for the partial derivatives, it is useful
to introduce two further sets of variables. First we let

We refer to 𝑧𝑗
𝑙

 as the weighted input for neuron j at layer 𝑙 . The
fundamental relation (8)

that propagates information through the network may then be written

Second, we let 𝛿 𝑙 ∈ ℝ𝑛𝑙 be defined by

This expression, which is often called the error in the j th neuron at
layer 𝑙 , is an intermediate quantity that is useful both for analysis and
computation.

However, we point out that this useage of the term error is somewhat
ambiguous. At a general, hidden layer, it is not clear how much to
“blame” each neuron for discrepancies in the final output

Also, at the output layer, L, the expression (21) does not quantify those
discrepancies directly.

The idea of referring to 𝛿𝑗
𝑙

 in (21) as an error seems to have arisen
because the cost function can only be at a minimum if all partial

derivatives are zero, so 𝛿𝑗
𝑙

= 0 is a useful goal.

As we mention later , it may be more helpful to keep in mind that 𝛿𝑗
𝑙

measures the sensitivity of the cost function to the weighted input for
neuron j at layer 𝑙 .

At this stage we also need to define the Hadamard, or
componentwise, product of two vectors. If x, 𝑦 ∈ ℝ𝑛, then 𝑥 ∘ 𝑦 𝜖 ℝ𝑛
is defined by 𝑥 ∘ 𝑦 𝑖 = 𝑥𝑖𝑦𝑖 . In words, the Hadamard product is
formed by pairwise multiplication of the corresponding components.

 With this notation, the following results are a consequence of the
chain rule.

Lemma 1 We have

Proof We begin by proving (22).

The relation (20)

with 𝑙 = 𝐿 shows that 𝑧𝑗
𝐿

 and 𝑎𝑗
𝐿

 are connected by 𝑎 𝐿 = 𝜎 𝑧 𝐿 ,
and hence

Also, from (18) ,

So, using the chain rule,

which is the componentwise form of (22).

To show (23),

we use the chain rule to convert from 𝑧𝑗
𝑙

 to 𝑧𝑘
𝑙+1

𝑘=1

𝑛𝑙+1
 .

Applying the chain rule, and using the definition (21),

Now, from (19) we know that 𝑧𝑘
𝑙+1

 and 𝑧𝑗
𝑙

are connected via

Hence,

In (26) this gives

which may be rearranged as

This is the componentwise form of (23).

To show (24),

we note from (19) and (20) that 𝑧𝑗
𝑙

is connected to 𝑏𝑗
𝑙

by

Since 𝑧 𝑙−1 does not depend on 𝑏𝑗
𝑙

 , we find that

Then, from the chain rule,

using the definition (21). This gives (24).

Finally, to obtain (25)

we start with the componentwise version of (19),

which gives independently of j ,

and

In words, (27) and (28) follow because the j th neuron at layer 𝑙 uses
the weights from only the j th row of 𝑊 𝑙 , and applies these weights
linearly. Then, from the chain rule, (27) and (28) give

where the last step used the definition of 𝛿𝑗
𝑙

in (21). This completes
the proof.

There are many aspects of Lemma 1 that deserve our attention. We recall
from (7), (19) and (20) that the output a [L] can be evaluated

from a forward pass through the network, computing

𝑎 1 ,𝑧 2 , 𝑎 2 , 𝑧 3 , . . . , 𝑎 𝐿 in order. Having done this, we see from (22)
that 𝛿 𝐿 is immediately available.

Then, from (23),

𝛿 𝐿−1 , 𝛿 𝐿−2 , . . . , 𝛿 2 may be computed in a backward pass. From
(24) and (25),

we then have access to the partial derivatives. Computing gradients in
this way is known as back propagation.

To gain further understanding of the back
propagation formulas (24) and (25) in Lemma
1, it is useful to recall the fundamental
definition of a partial derivative.

The quantity 𝜕 Τ𝐶 𝜕 𝜔𝑗𝑘
𝑙

measures how C
changes whe0n we make a small perturbation

to 𝜔𝑗𝑘
𝑙

.

For illustration, Figure 6 highlights the weight

𝜔43
3

. It is clear that a change in this weight
has no e-ffect on the output of previous
layers. It is clear that a change in this weight
has no effect on the output of previous layers.

It is clear that a change in this weight has no effect on the output of

previous layers. So to work out 𝜕 Τ𝐶 𝜕 𝜔43
3

we do not need to know
about partial derivatives at previous layers. It should, however, be

possible to express 𝜕 Τ𝐶 𝜕 𝜔43
3

in terms of partial derivatives at
subsequent layers.

More precisely, the activation feeding into the 4th neuron on layer 3

is 𝑧4
3

, and, by definition, 𝛿4
3

measures the sensitivity of C with

respect to this input. Feeding in to this neuron we have 𝜔43
3

𝑎3
2

+
constant, so it makes sense that

Similarly, in terms of the bias, 𝑏4
3

+ constant is feeding in to the
neuron, which explains why

We may avoid the Hadamard product notation in (22) and (23) by
introducing diagonal matrices.

Let 𝐷 𝑙 ∈ ℝ𝑛𝑙 × 𝑛𝑙 denote the diagonal matrix with (ⅈ, ⅈ) entry given by
𝜎′ 𝑧𝑖

𝑙
. Then we see that 𝛿 𝐿 = 𝐷 𝐿 𝑎 𝐿 − 𝑦 and

𝛿 𝑙 = 𝐷 𝐿 𝑊 𝑙+1 𝑇
𝛿 𝑙+1 . We could expand this out as

We also recall from (2) that σ 𝜎′ 𝑧 is trivial to compute.

The relation (24) shows that 𝛿 𝑙 corresponds precisely to the
gradient of the cost function with respect to the biases at layer 𝑙. If we
regard 𝜕 Τ𝐶 𝜕 𝜔𝑗𝑘

𝑙
as defining the (j, k) component in a matrix of partial

derivatives at layer 𝑙, then (25) shows this matrix to be the outer
product 𝛿 𝑙 𝑎 𝑙−1 𝑇

∈ ℝ𝑛𝑙×𝑛𝑙−1.

Putting this together, we may write the following pseudocode for an
algorithm that trains a network using a fixed number, Niter, of
stochastic gradient iterations.

For simplicity, we consider the basic version (15) where single samples
are chosen with replacement.

For each training point, we perform a forward pass through the
network in order to evaluate the activations, weighted inputs and
overall output 𝑎 𝐿 . Then we perform a backward pass to compute the
errors and updates.

For counter = 1 upto Niter

Choose an integer k uniformly at random from {1, 2, 3, . . . , N}

𝑥 𝑘 is current training data point

𝑎 1 = 𝑥 𝑘

For 𝑙 = 2 upto L

𝑧 𝑙 = 𝑊 𝑙 𝑎 𝑙−1 + 𝑏 𝑙

𝑎 𝑙 = 𝜎 𝑧 𝑙

𝐷 𝑙 = 𝑑ⅈ𝑎𝑔 𝜎′ 𝑧 𝑙

end

For 𝑙 = L downto 2

𝑊 𝑙 → 𝑊 𝑙 − 𝜂𝛿 𝑙 𝑎 𝑙−1 𝑇

𝑏 𝑙 → 𝑏 𝑙 − 𝜂𝛿 𝑙

end

end

Thank you for attention!

	Слайд 1, DL in Applied Mathematics Lecture 5: Backpropagation
	Слайд 2
	Слайд 3
	Слайд 4, Back Propagation. The problem statments
	Слайд 5
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15
	Слайд 16
	Слайд 17
	Слайд 18
	Слайд 19
	Слайд 20
	Слайд 21
	Слайд 22
	Слайд 23
	Слайд 24
	Слайд 25
	Слайд 26
	Слайд 27
	Слайд 28

