
DL in Applied Mathematics

Lecture 6: Forecast Time Series Data

Marat Nurtas
PhD in Mathematical and Computer Modeling

Department of Mathematical and Computer Modeling
International Information Technology University, Almaty, Kazakhstan

In this lecture delves into enhancing the process of forecasting daily
energy consumption levels by transforming a time series dataset into a
tabular format using open-source libraries.

We explore the application of a popular multiclass classification model
and leverage AutoML with Cleanlab Studio to significantly boost our
out-of-sample accuracy.

The key takeaway from this lecture is that we can use more general
methods to model a time series data set into a tabular structure, and
even find improvements in trying to forecast those time series data.

Take a Snapshot

At a high level we will:

• Establish a baseline accuracy by fitting a Prophet forecasting model
on our time series data

• Convert our time series data into a tabular format by using open-
source featurization libraries and then will show that can outperform
our Prophet model with a standard multiclass classification (Gradient
Boosting) approach by a 67% reduction in prediction error (increase
by 38% raw percentage points in out-of-sample accuracy).

• Use an AutoML solution for multiclass classification resulted in a 42%
reduction in prediction error (increase by 8% in raw percentage
points in out-of-sample accuracy) compared to our Gradient Boosting
model and resulted in a 81% reduction in prediction error (increase
by 46% in raw percentage points in out-of-sample accuracy)
compared to our Prophet forecasting model.

Examine the Data

The data represents PJM hourly energy consumption (in megawatts) on
an hourly basis. PJM Interconnection LLC (PJM) is a regional
transmission organization (RTO) in the United States.

It is part of the Eastern Interconnection grid operating an electric
transmission system serving many states.

The data includes one datetime column (object type), and the
Megawatt Energy Consumption (float64) type) column we are trying to
forecast as a discrete variable (corresponding to the quartile of hourly
energy consumption levels).

Our aim is to train a time series forecasting model to be able to forecast
the tomorrow’s daily energy consumption level falling into 1 of 4 levels:
low , below average , above average or high (these levels were
determined based on quartiles of the overall daily consumption
distribution).

We first demonstrate how to apply time-series forecasting methods like
Prophet to this problem, but these are restricted to certain types of ML
models suitable for time-series data.

Next we demonstrate how to reframe this problem into a standard
multiclass classification problem that we can apply any machine
learning model to, and show how we can obtain superior forecasts by
using powerful supervised ML.

We first convert this data into a average energy consumption at a daily
level and rename the columns to the format that the Prophet
forecasting model expects.

These real-valued daily energy consumption levels are converted into
quartiles, which is the value we are trying to predict.

Our training data is shown below along with the quartile each daily
energy consumption level falls into.

The quartiles are computed using training data to prevent data leakage.

We now show the training
data we use to fit our
prediction model.

Training data with quartile
of daily energy
consumption level
included

We then show the test
data against which we
evaluate our prediction
results.

Test data with quartile of
daily energy consumption
level included

Train and Evaluate Prophet Forecasting
Model

As seen in the images above, we will use a date cutoff of 2015-04-09 to
end the range of our training data and start our test data at 2015-04-10

We compute quartile thresholds of our daily energy consumption using
ONLY training data.

This avoids data leakage - using out-of-sample data that is available
only in the future.

Next, we will forecast the daily PJME energy consumption level (in MW)
for the duration of our test data and represent the forecasted values as
a discrete variable.

This variable represents which quartile the daily energy consumption
level falls into, represented categorically as 1 (low), 2 (below average),
3 (above average), or 4 (high). For evaluation, we are going to use the
accuracy_score function from scikit-learn to evaluate the performance
of our models.

Since we are formulating the problem this way, we are able to evaluate
our model’s next-day forecasts (and compare future models) using
classification accuracy.

import numpy as np
from prophet import Prophet
from sklearn.metrics import accuracy_score

Initialize model and train it on training data
model = Prophet()
model.fit(train_df)

Create a dataframe for future predictions covering the test period
future = model.make_future_dataframe(periods=len(test_df), freq='D')
forecast = model.predict(future)

Categorize forecasted daily values into quartiles based on the
thresholds
forecast['quartile'] = pd.cut(forecast['yhat'], bins = [-np.inf] +
list(quartiles) + [np.inf], labels=[1, 2, 3, 4])

Extract the forecasted quartiles for the test period
forecasted_quartiles = forecast.iloc[-len(test_df):]['quartile'].astype(int)

Categorize actual daily values in the test set into quartiles
test_df['quartile'] = pd.cut(test_df['y'], bins=[-np.inf] + list(quartiles) +
[np.inf], labels=[1, 2, 3, 4])
actual_test_quartiles = test_df['quartile'].astype(int)

Calculate the evaluation metrics
accuracy = accuracy_score(actual_test_quartiles, forecasted_quartiles)

Print the evaluation metrics
print(f'Accuracy: {accuracy:.4f}')
>>> 0.4249

The out-of-sample accuracy is quite poor at 43%.
By modelling our time series this way, we limit ourselves to only use time
series forecasting models (a limited subset of possible ML models).
Once the time-series has been transformed into a standard tabular dataset,
we’re able to employ any supervised ML model for forecasting this daily
energy consumption data.

Convert time series data to tabular data
through featurization
Now we convert the time series data into a tabular format and
featurize the data using the open source libraries sktime, tsfresh, and
tsfel.

By employing libraries like these, we can extract a wide array of
features that capture underlying patterns and characteristics of the
time series data.

This includes statistical, temporal, and possibly spectral features, which
provide a comprehensive snapshot of the data's behavior over time.

By breaking down time series into individual features, it becomes easier
to understand how different aspects of the data influence the target
variable.

TSFreshFeatureExtractor is a feature extraction tool from the sktime
library that leverages the capabilities of tsfresh to extract relevant
features from time series data.

tsfresh is designed to automatically calculate a vast number of time
series characteristics, which can be highly beneficial for understanding
complex temporal dynamics.

For our use case, we make use of the minimal and essential set of
features from our TSFreshFeatureExtractor to featurize our data.

tsfel, or Time Series Feature Extraction Library, offers a comprehensive
suite of tools for extracting features from time series data.

We make use of a predefined config that allows for a rich set of
features (e.g., statistical, temporal, spectral) to be constructed from the
energy consumption time series data, capturing a wide range of
characteristics that might be relevant for our classification task.

import tsfel
from sktime.transformations.panel.tsfresh import
TSFreshFeatureExtractor

Define tsfresh feature extractor
tsfresh_trafo =
TSFreshFeatureExtractor(default_fc_parameters="minimal")

Transform the training data using the feature extractor
X_train_transformed = tsfresh_trafo.fit_transform(X_train)

Transform the test data using the same feature extractor
X_test_transformed = tsfresh_trafo.transform(X_test)

Retrieves a pre-defined feature configuration file to extract all
available features
cfg = tsfel.get_features_by_domain()

Function to compute tsfel features per day
def compute_features(group):

TSFEL expects a DataFrame with the data in columns, so we
transpose the input group

features = tsfel.time_series_features_extractor(cfg, group, fs=1,
verbose=0)

return features

Group by the 'day' level of the index and apply the feature
computation
train_features_per_day =
X_train.groupby(level='Date').apply(compute_features).reset_index(dr
op=True)
test_features_per_day =
X_test.groupby(level='Date').apply(compute_features).reset_index(dro
p=True)

Combine each featurization into a set of combined features for our
train/test data
train_combined_df = pd.concat([X_train_transformed,
train_features_per_day], axis=1)
test_combined_df = pd.concat([X_test_transformed,
test_features_per_day], axis=1)

Next, we clean our dataset by removing features that showed a high
correlation (above 0.8) with our target variable — average daily energy
consumption levels — and those with null correlations.

High correlation features can lead to overfitting, where the model
performs well on training data but poorly on unseen data.

Null-correlated features, on the other hand, provide no value as they
lack a definable relationship with the target.

By excluding these features, we aim to improve model generalizability
and ensure that our predictions are based on a balanced and
meaningful set of data inputs.

Filter out features that are highly correlated with our target variable
column_of_interest = "PJME_MW__mean"
train_corr_matrix = train_combined_df.corr()
train_corr_with_interest = train_corr_matrix[column_of_interest]
null_corrs = pd.Series(train_corr_with_interest.isnull())
false_features = null_corrs[null_corrs].index.tolist()

columns_to_exclude =
list(set(train_corr_with_interest[abs(train_corr_with_interest) >
0.8].index.tolist() + false_features))
columns_to_exclude.remove(column_of_interest)

Filtered DataFrame excluding columns with high correlation to the
column of interest
X_train_transformed =
train_combined_df.drop(columns=columns_to_exclude)
X_test_transformed =
test_combined_df.drop(columns=columns_to_exclude)

If we look at the first several rows of the training data now, this is a
snapshot of what it looks like.

We now have 73 features that were added from the time series
featurization libraries we used.

The label we are going to predict based on these features is the next
day’s energy consumption level.

First 5 rows of training data which is newly featurized and in a tabular
format

It’s important to note that we used a best practice of applying the
featurization process separately for training and test data to avoid data
leakage (and the held-out test data are our most recent observations).

Also, we compute our discrete quartile value (using the quartiles we
originally defined) using the following code to obtain our train/test
energy labels, which is what our y_labels are.

Define a function to classify each value into a quartile
def classify_into_quartile(value):

if value < quartiles[0]:
return 1

elif value < quartiles[1]:
return 2

elif value < quartiles[2]:
return 3

else:
return 4

y_train =
X_train_transformed["PJME_MW__mean"].rename("daily_energy_level")
X_train_transformed.drop("PJME_MW__mean", inplace=True, axis=1)

y_test =
X_test_transformed["PJME_MW__mean"].rename("daily_energy_level")
X_test_transformed.drop("PJME_MW__mean", inplace=True, axis=1)

energy_levels_train = y_train.apply(classify_into_quartile)
energy_levels_test = y_test.apply(classify_into_quartile)

Train and Evaluate GradientBoostingClassifier
Model on featurized tabular data

Using our featurized tabular dataset, we can apply any supervised ML
model to predict future energy consumption levels.

Here we’ll use a Gradient Boosting Classifier (GBC) model, the weapon
of choice for most data scientists operating on tabular data.

Our GBC model is instantiated from the sklearn.ensemble module and
configured with specific hyperparameters to optimize its performance
and avoid overfitting.

from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier(
n_estimators=150,
learning_rate=0.1,
max_depth=4,
min_samples_leaf=20,
max_features='sqrt’,
subsample=0.8,
random_state=42

)

gbc.fit(X_train_transformed, energy_levels_train)

y_pred_gbc = gbc.predict(X_test_transformed)
gbc_accuracy = accuracy_score(energy_levels_test, y_pred_gbc)
print(f'Accuracy: {gbc_accuracy:.4f}')
>>> 0.8075

The out-of-sample accuracy of 81% is considerably better than our
prior Prophet model results.

Using AutoML to streamline things

Now that we’ve seen how to featurize the time-series problem and the
benefits of applying powerful ML models like Gradient Boosting, a
natural question emerges:

Which supervised ML model should we apply?

Of course, we could experiment with many models, tune their
hyperparameters, and ensemble them together.

An easier solution is to let AutoML handle all of this for us.

Here we’ll use a simple AutoML solution provided in Cleanlab Studio,
which involves zero configuration.

We just provide our tabular dataset, and the platform automatically
trains many types of supervised ML models (including Gradient
Boosting among others), tunes their hyperparameters, and determines
which models are best to combine into a single predictor.

Here’s all the code needed to train and deploy an AutoML supervised
classifier:

from cleanlab_studio import Studio

studio = Studio()
studio.create_project(

dataset_id=energy_forecasting_dataset,
project_name="ENERGY-LEVEL-FORECASTING",
modality="tabular",
task_type="multi-class",
model_type="regular",
label_column="daily_energy_level",

)

model = studio.get_model(energy_forecasting_model)
y_pred_automl = model.predict(test_data, return_pred_proba=True)

Below we can see model
evaluation estimates in the
AutoML platform, showing all
of the different types of ML
models that were
automatically fit and
evaluated (including multiple
Gradient Boosting models), as
well as an ensemble predictor
constructed by optimally
combining their predictions.

AutoML results across
different types of models
used

After running inference on our test data to obtain the next-day energy
consumption level predictions, we see the test accuracy is 89%, a 8%
raw percentage points improvement compared to our previous
Gradient Boosting approach.

AutoML test accuracy on our daily energy consumption level data

Conclusion

For our PJM daily energy consumption data, we found that transforming the
data into a tabular format and featurizing it achieved a 67% reduction in
prediction error (increase by 38% in raw percentage points in out-of-sample
accuracy) compared to our baseline accuracy established with our Prophet
forecasting model.

We also tried an easy AutoML approach for multiclass classification,
which resulted in a 42% reduction in prediction error (increase by 8% in raw
percentage points in out-of-sample accuracy) compared to our Gradient
Boosting model and resulted in a 81% reduction in prediction
error (increase by 46% in raw percentage points in out-of-sample accuracy)
compared to our Prophet forecasting model.

By taking approaches like those illustrated above to model a time series
dataset beyond the constrained approach of only considering
forecasting methods, we can apply more general supervised ML
techniques and achieve better results for certain types of forecasting
problems.

Thank you for attention!

	Слайд 1, DL in Applied Mathematics
	Слайд 2
	Слайд 3, Take a Snapshot
	Слайд 4
	Слайд 5, Examine the Data
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10, Train and Evaluate Prophet Forecasting Model
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15, Convert time series data to tabular data through featurization
	Слайд 16
	Слайд 17
	Слайд 18
	Слайд 19
	Слайд 20
	Слайд 21
	Слайд 22
	Слайд 23
	Слайд 24
	Слайд 25
	Слайд 26, Train and Evaluate GradientBoostingClassifier Model on featurized tabular data
	Слайд 27
	Слайд 28
	Слайд 29, Using AutoML to streamline things
	Слайд 30
	Слайд 31
	Слайд 32
	Слайд 33
	Слайд 34, Conclusion
	Слайд 35
	Слайд 36

