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In this lecture delves into enhancing the process of forecasting daily 
energy consumption levels by transforming a time series dataset into a 
tabular format using open-source libraries. 

We explore the application of a popular multiclass classification model 
and leverage AutoML with Cleanlab Studio to significantly boost our 
out-of-sample accuracy.

The key takeaway from this lecture is that we can use more general 
methods to model a time series data set into a tabular structure, and 
even find improvements in trying to forecast those time series data.



Take a Snapshot

At a high level we will:

• Establish a baseline accuracy by fitting a Prophet forecasting model 
on our time series data

• Convert our time series data into a tabular format by using open-
source featurization libraries and then will show that can outperform 
our Prophet model with a standard multiclass classification (Gradient 
Boosting) approach by a 67% reduction in prediction error (increase 
by 38% raw percentage points in out-of-sample accuracy).



• Use an AutoML solution for multiclass classification resulted in a 42% 
reduction in prediction error (increase by 8% in raw percentage 
points in out-of-sample accuracy) compared to our Gradient Boosting 
model and resulted in a 81% reduction in prediction error (increase 
by 46% in raw percentage points in out-of-sample accuracy) 
compared to our Prophet forecasting model.



Examine the Data

The data represents PJM hourly energy consumption (in megawatts) on 
an hourly basis. PJM Interconnection LLC (PJM) is a regional 
transmission organization (RTO) in the United States. 

It is part of the Eastern Interconnection grid operating an electric 
transmission system serving many states.

The data includes one datetime column (object type), and the
Megawatt Energy Consumption (float64) type) column we are trying to
forecast as a discrete variable (corresponding to the quartile of hourly
energy consumption levels).



Our aim is to train a time series forecasting model to be able to forecast 
the tomorrow’s daily energy consumption level falling into 1 of 4 levels: 
low , below average , above average or high (these levels were 
determined based on quartiles of the overall daily consumption 
distribution). 

We first demonstrate how to apply time-series forecasting methods like 
Prophet to this problem, but these are restricted to certain types of ML 
models suitable for time-series data.

Next we demonstrate how to reframe this problem into a standard 
multiclass classification problem that we can apply any machine 
learning model to, and show how we can obtain superior forecasts by 
using powerful supervised ML.



We first convert this data into a average energy consumption at a daily 
level and rename the columns to the format that the Prophet 
forecasting model expects. 

These real-valued daily energy consumption levels are converted into 
quartiles, which is the value we are trying to predict. 

Our training data is shown below along with the quartile each daily 
energy consumption level falls into. 

The quartiles are computed using training data to prevent data leakage.



We now show the training 
data we use to fit our 
prediction model.

Training data with quartile 
of daily energy 
consumption level 
included



We then show the test 
data against which we 
evaluate our prediction 
results.

Test data with quartile of 
daily energy consumption 
level included



Train and Evaluate Prophet Forecasting 
Model

As seen in the images above, we will use a date cutoff of 2015-04-09 to 
end the range of our training data and start our test data at 2015-04-10

We compute quartile thresholds of our daily energy consumption using 
ONLY training data. 

This avoids data leakage - using out-of-sample data that is available 
only in the future.



Next, we will forecast the daily PJME energy consumption level (in MW) 
for the duration of our test data and represent the forecasted values as 
a discrete variable. 

This variable represents which quartile the daily energy consumption 
level falls into, represented categorically as 1 (low), 2 (below average), 
3 (above average), or 4 (high). For evaluation, we are going to use the 
accuracy_score function from scikit-learn to evaluate the performance 
of our models. 

Since we are formulating the problem this way, we are able to evaluate 
our model’s next-day forecasts (and compare future models) using 
classification accuracy.



import numpy as np
from prophet import Prophet
from sklearn.metrics import accuracy_score

# Initialize model and train it on training data
model = Prophet()
model.fit(train_df)

# Create a dataframe for future predictions covering the test period
future = model.make_future_dataframe(periods=len(test_df), freq='D')
forecast = model.predict(future)



# Categorize forecasted daily values into quartiles based on the 
thresholds
forecast['quartile'] = pd.cut(forecast['yhat'], bins = [-np.inf] + 
list(quartiles) + [np.inf], labels=[1, 2, 3, 4])

# Extract the forecasted quartiles for the test period
forecasted_quartiles = forecast.iloc[-len(test_df):]['quartile'].astype(int)

# Categorize actual daily values in the test set into quartiles
test_df['quartile'] = pd.cut(test_df['y'], bins=[-np.inf] + list(quartiles) + 
[np.inf], labels=[1, 2, 3, 4])
actual_test_quartiles = test_df['quartile'].astype(int)



# Calculate the evaluation metrics
accuracy = accuracy_score(actual_test_quartiles, forecasted_quartiles)

# Print the evaluation metrics
print(f'Accuracy: {accuracy:.4f}')
>>> 0.4249

The out-of-sample accuracy is quite poor at 43%. 
By modelling our time series this way, we limit ourselves to only use time 
series forecasting models (a limited subset of possible ML models).
Once the time-series has been transformed into a standard tabular dataset, 
we’re able to employ any supervised ML model for forecasting this daily 
energy consumption data.



Convert time series data to tabular data 
through featurization
Now we convert the time series data into a tabular format and 
featurize the data using the open source libraries sktime, tsfresh, and 
tsfel. 

By employing libraries like these, we can extract a wide array of 
features that capture underlying patterns and characteristics of the 
time series data. 

This includes statistical, temporal, and possibly spectral features, which 
provide a comprehensive snapshot of the data's behavior over time. 

By breaking down time series into individual features, it becomes easier 
to understand how different aspects of the data influence the target 
variable.



TSFreshFeatureExtractor is a feature extraction tool from the sktime
library that leverages the capabilities of tsfresh to extract relevant 
features from time series data. 

tsfresh is designed to automatically calculate a vast number of time 
series characteristics, which can be highly beneficial for understanding 
complex temporal dynamics. 

For our use case, we make use of the minimal and essential set of 
features from our TSFreshFeatureExtractor to featurize our data.

tsfel, or Time Series Feature Extraction Library, offers a comprehensive 
suite of tools for extracting features from time series data. 



We make use of a predefined config that allows for a rich set of 
features (e.g., statistical, temporal, spectral) to be constructed from the 
energy consumption time series data, capturing a wide range of 
characteristics that might be relevant for our classification task.

import tsfel
from sktime.transformations.panel.tsfresh import
TSFreshFeatureExtractor

# Define tsfresh feature extractor
tsfresh_trafo = 
TSFreshFeatureExtractor(default_fc_parameters="minimal")

# Transform the training data using the feature extractor
X_train_transformed = tsfresh_trafo.fit_transform(X_train)



# Transform the test data using the same feature extractor
X_test_transformed = tsfresh_trafo.transform(X_test)

# Retrieves a pre-defined feature configuration file to extract all 
available features
cfg = tsfel.get_features_by_domain()

# Function to compute tsfel features per day
def compute_features(group):

# TSFEL expects a DataFrame with the data in columns, so we 
transpose the input group

features = tsfel.time_series_features_extractor(cfg, group, fs=1, 
verbose=0)

return features



# Group by the 'day' level of the index and apply the feature 
computation
train_features_per_day = 
X_train.groupby(level='Date').apply(compute_features).reset_index(dr
op=True)
test_features_per_day = 
X_test.groupby(level='Date').apply(compute_features).reset_index(dro
p=True)

# Combine each featurization into a set of combined features for our 
train/test data
train_combined_df = pd.concat([X_train_transformed, 
train_features_per_day], axis=1)
test_combined_df = pd.concat([X_test_transformed, 
test_features_per_day], axis=1)



Next, we clean our dataset by removing features that showed a high 
correlation (above 0.8) with our target variable — average daily energy 
consumption levels — and those with null correlations. 

High correlation features can lead to overfitting, where the model 
performs well on training data but poorly on unseen data. 

Null-correlated features, on the other hand, provide no value as they 
lack a definable relationship with the target.

By excluding these features, we aim to improve model generalizability 
and ensure that our predictions are based on a balanced and 
meaningful set of data inputs.



# Filter out features that are highly correlated with our target variable
column_of_interest = "PJME_MW__mean"
train_corr_matrix = train_combined_df.corr()
train_corr_with_interest = train_corr_matrix[column_of_interest]
null_corrs = pd.Series(train_corr_with_interest.isnull())
false_features = null_corrs[null_corrs].index.tolist()

columns_to_exclude = 
list(set(train_corr_with_interest[abs(train_corr_with_interest) > 
0.8].index.tolist() + false_features))
columns_to_exclude.remove(column_of_interest)



# Filtered DataFrame excluding columns with high correlation to the 
column of interest
X_train_transformed = 
train_combined_df.drop(columns=columns_to_exclude)
X_test_transformed = 
test_combined_df.drop(columns=columns_to_exclude)

If we look at the first several rows of the training data now, this is a 
snapshot of what it looks like. 

We now have 73 features that were added from the time series 
featurization libraries we used. 

The label we are going to predict based on these features is the next 
day’s energy consumption level.



First 5 rows of training data which is newly featurized and in a tabular 
format

It’s important to note that we used a best practice of applying the 
featurization process separately for training and test data to avoid data 
leakage (and the held-out test data are our most recent observations).



Also, we compute our discrete quartile value (using the quartiles we 
originally defined) using the following code to obtain our train/test 
energy labels, which is what our y_labels are.

# Define a function to classify each value into a quartile
def classify_into_quartile(value):

if value < quartiles[0]:
return 1

elif value < quartiles[1]:
return 2

elif value < quartiles[2]:
return 3

else:
return 4



y_train = 
X_train_transformed["PJME_MW__mean"].rename("daily_energy_level")
X_train_transformed.drop("PJME_MW__mean", inplace=True, axis=1)

y_test = 
X_test_transformed["PJME_MW__mean"].rename("daily_energy_level")
X_test_transformed.drop("PJME_MW__mean", inplace=True, axis=1)

energy_levels_train = y_train.apply(classify_into_quartile)
energy_levels_test = y_test.apply(classify_into_quartile)



Train and Evaluate GradientBoostingClassifier
Model on featurized tabular data

Using our featurized tabular dataset, we can apply any supervised ML 
model to predict future energy consumption levels. 

Here we’ll use a Gradient Boosting Classifier (GBC) model, the weapon 
of choice for most data scientists operating on tabular data.

Our GBC model is instantiated from the sklearn.ensemble module and 
configured with specific hyperparameters to optimize its performance 
and avoid overfitting.



from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier(
n_estimators=150,
learning_rate=0.1,
max_depth=4,
min_samples_leaf=20,
max_features='sqrt’,
subsample=0.8,
random_state=42

)

gbc.fit(X_train_transformed, energy_levels_train)



y_pred_gbc = gbc.predict(X_test_transformed)
gbc_accuracy = accuracy_score(energy_levels_test, y_pred_gbc)
print(f'Accuracy: {gbc_accuracy:.4f}')
>>> 0.8075

The out-of-sample accuracy of 81% is considerably better than our 
prior Prophet model results.



Using AutoML to streamline things

Now that we’ve seen how to featurize the time-series problem and the 
benefits of applying powerful ML models like Gradient Boosting, a 
natural question emerges: 

Which supervised ML model should we apply? 

Of course, we could experiment with many models, tune their 
hyperparameters, and ensemble them together. 

An easier solution is to let AutoML handle all of this for us.



Here we’ll use a simple AutoML solution provided in Cleanlab Studio, 
which involves zero configuration. 

We just provide our tabular dataset, and the platform automatically 
trains many types of supervised ML models (including Gradient 
Boosting among others), tunes their hyperparameters, and determines 
which models are best to combine into a single predictor. 

Here’s all the code needed to train and deploy an AutoML supervised 
classifier:



from cleanlab_studio import Studio

studio = Studio()
studio.create_project(

dataset_id=energy_forecasting_dataset,
project_name="ENERGY-LEVEL-FORECASTING",
modality="tabular",
task_type="multi-class",
model_type="regular",
label_column="daily_energy_level",

)

model = studio.get_model(energy_forecasting_model)
y_pred_automl = model.predict(test_data, return_pred_proba=True)



Below we can see model 
evaluation estimates in the 
AutoML platform, showing all 
of the different types of ML 
models that were 
automatically fit and 
evaluated (including multiple 
Gradient Boosting models), as 
well as an ensemble predictor 
constructed by optimally 
combining their predictions.

AutoML results across 
different types of models 
used



After running inference on our test data to obtain the next-day energy 
consumption level predictions, we see the test accuracy is 89%, a 8% 
raw percentage points improvement compared to our previous 
Gradient Boosting approach.

AutoML test accuracy on our daily energy consumption level data



Conclusion

For our PJM daily energy consumption data, we found that transforming the 
data into a tabular format and featurizing it achieved a 67% reduction in 
prediction error (increase by 38% in raw percentage points in out-of-sample 
accuracy) compared to our baseline accuracy established with our Prophet 
forecasting model.

We also tried an easy AutoML approach for multiclass classification, 
which resulted in a 42% reduction in prediction error (increase by 8% in raw 
percentage points in out-of-sample accuracy) compared to our Gradient 
Boosting model and resulted in a 81% reduction in prediction 
error (increase by 46% in raw percentage points in out-of-sample accuracy) 
compared to our Prophet forecasting model.



By taking approaches like those illustrated above to model a time series 
dataset beyond the constrained approach of only considering 
forecasting methods, we can apply more general supervised ML 
techniques and achieve better results for certain types of forecasting 
problems.



Thank you for attention!
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