
DL in Applied Mathematics

Lecture 7: Avoiding Overfitting Through 
Regularization. Max-Norm Regularization



Avoid Overfitting with Regularization
In this class We’ll do three things: (a) define the problem that we want to 
tackle with regularization; then (b) examine how exactly regularization 
helps; and finally (c) explain how regularization works in action.

What is the problem?

Let’s say you want to predict house prices based on some features. You 
start with one feature, floor area, and you build your first regression 
model.

house_price = a+ b1*floor_area + e



At the other extreme, you could end up selecting 200 different features 
that can potentially impact house prices. So you built a really complex 
model and tested it on the training data and found that it performed 
great!

So how to find the sweet spot where a model is NOT too complex but 
complex enough to pick up the signal and performs relatively well in out-
of-sample data?

How exactly regularization helps?

Ideally, if we had a large number of features, we’d add in features one by 
one and in different combinations to see their impacts on model 
performance and choose the best model based on the performance 
metric.



• house_price = floor_area + garage_condition — — — — — — — (model 1)

• house_price = garage_condition+ bedrooms — — —— —— — -(model 2)

• house_price = floor_area + garage_condition+ bedrooms — —(model 3)

• … and so on.

Do you see the problem here?

Overfitting with lots of features that we actually want to avoid?



How does it work in practice?

Let’s start with the cost function (a.k.a objective function) that we want to 
optimize in regression.

You know what a cost function is, right?

There are several cost functions out there such as Mean Squared Error 
(MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) etc.



How MSE works:

• it takes differences between observed and predicted values (Y — Y-hat) for 
each data point (i),

• squares the difference,

• repeats the process for all points,

• sums them up, and finally

• takes an average by dividing by the number of data points (n).



If our regression model is Ŷ = α + θi Xi (where θ is the coefficient of X), then 
the cost function following MSE formulation above is:

So the purpose of regularization is to add a small bias in the error function:

There are two kinds of regularization terms — L1 and L2. Depending on 
which term is used, a normal multiple regression is called by different 
names.



Ridge regression

We call a normal regression the “Ridge regression” when it uses L2 
Regularization.

The purpose of L2 is to shrink feature coefficients to close to zero, but not 
exactly zero.

So the cost function we want to minimize with Ridge regression is:



LASSO regression

It sets some feature coefficients to zero through L1 Regularization. This 
process essentially eliminates those features from the model instead of 
minimizing their impacts.



For example, assuming you have just one hidden layer with weights 
weights1 and one output layer with weights weights2, then you can apply 
ℓ1 regularization like this:

• [...] # construct the neural network

• base_loss = tf.reduce_mean(xentropy, name="avg_xentropy")

• reg_losses = tf.reduce_sum(tf.abs(weights1)) + 
tf.reduce_sum(tf.abs(weights2))

• loss = tf.add(base_loss, scale * reg_losses, name="loss")

However, if there are many layers, this approach is not very convenient.



The following code puts all this together:

• with arg_scope(

• [fully_connected],

• weights_regularizer=tf.contrib.layers.l1_regularizer(scale=0.01)):

• hidden1 = fully_connected(X, n_hidden1, scope="hidden1")

• hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")

• logits = fully_connected(hidden2, n_outputs, activation_fn=None,scope
="out")

You just need to add these regularization losses to your overall loss, like this: 

reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) 

loss = tf.add_n([base_loss] + reg_losses, name="loss")



Hyperparameter λ:

This is the only parameter responsible for penalizing the features.

What values does λ take and how to find the perfect value?

There are several ways to find the λ value. But know that two popular 
methods are: gradient descent and cross-validation. 

There is another easy getaway — using both L1 and L2 regularization in the 
same regression. When we use both regularization terms in the model, it is 
called ElasticNet Regression.



Example:

#Add Regulization
# https://stackoverflow.com/questions/36706379/how-to-exactly-add-l1-
regularisation-to-tensorflow-error-function
total_loss = meansq #or other loss calcuation
l1_regularizer = tf.contrib.layers.l1_regularizer(
scale=0.005, scope=None
)
weights = tf.trainable_variables() # all vars of your graph
regularization_penalty = tf.contrib.layers.apply_regularization(l1_regularizer, 
weights)
regularized_loss = total_loss + regularization_penalty # this loss needs to be 
minimized
train_step = 
tf.train.GradientDescentOptimizer(0.05).minimize(regularized_loss)

https://stackoverflow.com/questions/36706379/how-to-exactly-add-l1-regularisation-to-tensorflow-error-function
https://stackoverflow.com/questions/36706379/how-to-exactly-add-l1-regularisation-to-tensorflow-error-function


Dropout

• The most popular regularization technique for deep neural networks is 
arguably dropout. It is a fairly simple algorithm: at every training step, 
every neuron has a probability p of being temporarily “dropped out,” 
meaning it will be entirely ignored during this training step, but it may be 
active during the next step. The hyperparameter p is called the dropout 
rate, and it is typically set to 50%.

Example 2

# Set up the pooling layer with dropout using tf.nn.max_pool
with tf.name_scope("pool3"):
pool3 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], 
padding="VALID")
pool3_flat = tf.reshape(pool3, shape=[-1, pool3_fmaps * 14 * 14])
pool3_flat_drop = tf.layers.dropout(pool3_flat, pool3_dropout_rate, 
training=training)



Data Augmentation

• One last regularization technique, data augmentation, generating new 
training instances from existing ones, artificially boosting the size of the 
training set. This will reduce overfitting. The trick is to generate realistic 
training instances

• For example, if your model is meant to classify pictures of mushrooms, 
you can slightly shift, rotate, and resize every picture in the training set by 
various amounts and add the resulting pictures to the training set.



• #Image Augmentation 
for img_id in imges:
image = np.array(cv2.imread(train_dir + img_id))
label = train_df[train_df['id'] == img_id]['has_cactus'].values[0]
X_tr.append(image)
Y_tr.append(label) 
X_tr.append(np.flip(image))
Y_tr.append(label) 
X_tr.append(np.flipud(image))
Y_tr.append(label) 
X_tr.append(np.fliplr(image))
Y_tr.append(label) 
X_tr = np.asarray(X_tr).astype('float32')/225
Y_tr = np.asarray(Y_tr)

• Check the full GitHub code at https://github.com/Cikbok/Week3Project.

https://github.com/Cikbok/Week3Project


Summary
To summarise, in this class we’ve focused on three things:

• The problem: if there is a large number of features in a dataset, we could 
easily end up overfitting the model by poorly selecting the features.

• How regularization helps: regularization is a technique to optimize model 
performance and it does so by adding a small bias in the cost function. 
This small bias shrinks feature coefficients and reduces their sensitivity.

• How it works: Two types of regularization are used — L1 (LASSO 
regression) and L2 (Ridge regression). They are controlled by a 
hyperparameter λ.
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