
DL in Applied Mathematics

Lecture 7: Avoiding Overfitting Through
Regularization. Max-Norm Regularization

Avoid Overfitting with Regularization
In this class We’ll do three things: (a) define the problem that we want to
tackle with regularization; then (b) examine how exactly regularization
helps; and finally (c) explain how regularization works in action.

What is the problem?

Let’s say you want to predict house prices based on some features. You
start with one feature, floor area, and you build your first regression
model.

house_price = a+ b1*floor_area + e

At the other extreme, you could end up selecting 200 different features
that can potentially impact house prices. So you built a really complex
model and tested it on the training data and found that it performed
great!

So how to find the sweet spot where a model is NOT too complex but
complex enough to pick up the signal and performs relatively well in out-
of-sample data?

How exactly regularization helps?

Ideally, if we had a large number of features, we’d add in features one by
one and in different combinations to see their impacts on model
performance and choose the best model based on the performance
metric.

• house_price = floor_area + garage_condition — — — — — — — (model 1)

• house_price = garage_condition+ bedrooms — — —— —— — -(model 2)

• house_price = floor_area + garage_condition+ bedrooms — —(model 3)

• … and so on.

Do you see the problem here?

Overfitting with lots of features that we actually want to avoid?

How does it work in practice?

Let’s start with the cost function (a.k.a objective function) that we want to
optimize in regression.

You know what a cost function is, right?

There are several cost functions out there such as Mean Squared Error
(MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) etc.

How MSE works:

• it takes differences between observed and predicted values (Y — Y-hat) for
each data point (i),

• squares the difference,

• repeats the process for all points,

• sums them up, and finally

• takes an average by dividing by the number of data points (n).

If our regression model is Ŷ = α + θi Xi (where θ is the coefficient of X), then
the cost function following MSE formulation above is:

So the purpose of regularization is to add a small bias in the error function:

There are two kinds of regularization terms — L1 and L2. Depending on
which term is used, a normal multiple regression is called by different
names.

Ridge regression

We call a normal regression the “Ridge regression” when it uses L2
Regularization.

The purpose of L2 is to shrink feature coefficients to close to zero, but not
exactly zero.

So the cost function we want to minimize with Ridge regression is:

LASSO regression

It sets some feature coefficients to zero through L1 Regularization. This
process essentially eliminates those features from the model instead of
minimizing their impacts.

For example, assuming you have just one hidden layer with weights
weights1 and one output layer with weights weights2, then you can apply
ℓ1 regularization like this:

• [...] # construct the neural network

• base_loss = tf.reduce_mean(xentropy, name="avg_xentropy")

• reg_losses = tf.reduce_sum(tf.abs(weights1)) +
tf.reduce_sum(tf.abs(weights2))

• loss = tf.add(base_loss, scale * reg_losses, name="loss")

However, if there are many layers, this approach is not very convenient.

The following code puts all this together:

• with arg_scope(

• [fully_connected],

• weights_regularizer=tf.contrib.layers.l1_regularizer(scale=0.01)):

• hidden1 = fully_connected(X, n_hidden1, scope="hidden1")

• hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")

• logits = fully_connected(hidden2, n_outputs, activation_fn=None,scope
="out")

You just need to add these regularization losses to your overall loss, like this:

reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

loss = tf.add_n([base_loss] + reg_losses, name="loss")

Hyperparameter λ:

This is the only parameter responsible for penalizing the features.

What values does λ take and how to find the perfect value?

There are several ways to find the λ value. But know that two popular
methods are: gradient descent and cross-validation.

There is another easy getaway — using both L1 and L2 regularization in the
same regression. When we use both regularization terms in the model, it is
called ElasticNet Regression.

Example:

#Add Regulization
https://stackoverflow.com/questions/36706379/how-to-exactly-add-l1-
regularisation-to-tensorflow-error-function
total_loss = meansq #or other loss calcuation
l1_regularizer = tf.contrib.layers.l1_regularizer(
scale=0.005, scope=None
)
weights = tf.trainable_variables() # all vars of your graph
regularization_penalty = tf.contrib.layers.apply_regularization(l1_regularizer,
weights)
regularized_loss = total_loss + regularization_penalty # this loss needs to be
minimized
train_step =
tf.train.GradientDescentOptimizer(0.05).minimize(regularized_loss)

https://stackoverflow.com/questions/36706379/how-to-exactly-add-l1-regularisation-to-tensorflow-error-function
https://stackoverflow.com/questions/36706379/how-to-exactly-add-l1-regularisation-to-tensorflow-error-function

Dropout

• The most popular regularization technique for deep neural networks is
arguably dropout. It is a fairly simple algorithm: at every training step,
every neuron has a probability p of being temporarily “dropped out,”
meaning it will be entirely ignored during this training step, but it may be
active during the next step. The hyperparameter p is called the dropout
rate, and it is typically set to 50%.

Example 2

Set up the pooling layer with dropout using tf.nn.max_pool
with tf.name_scope("pool3"):
pool3 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding="VALID")
pool3_flat = tf.reshape(pool3, shape=[-1, pool3_fmaps * 14 * 14])
pool3_flat_drop = tf.layers.dropout(pool3_flat, pool3_dropout_rate,
training=training)

Data Augmentation

• One last regularization technique, data augmentation, generating new
training instances from existing ones, artificially boosting the size of the
training set. This will reduce overfitting. The trick is to generate realistic
training instances

• For example, if your model is meant to classify pictures of mushrooms,
you can slightly shift, rotate, and resize every picture in the training set by
various amounts and add the resulting pictures to the training set.

• #Image Augmentation
for img_id in imges:
image = np.array(cv2.imread(train_dir + img_id))
label = train_df[train_df['id'] == img_id]['has_cactus'].values[0]
X_tr.append(image)
Y_tr.append(label)
X_tr.append(np.flip(image))
Y_tr.append(label)
X_tr.append(np.flipud(image))
Y_tr.append(label)
X_tr.append(np.fliplr(image))
Y_tr.append(label)
X_tr = np.asarray(X_tr).astype('float32')/225
Y_tr = np.asarray(Y_tr)

• Check the full GitHub code at https://github.com/Cikbok/Week3Project.

https://github.com/Cikbok/Week3Project

Summary
To summarise, in this class we’ve focused on three things:

• The problem: if there is a large number of features in a dataset, we could
easily end up overfitting the model by poorly selecting the features.

• How regularization helps: regularization is a technique to optimize model
performance and it does so by adding a small bias in the cost function.
This small bias shrinks feature coefficients and reduces their sensitivity.

• How it works: Two types of regularization are used — L1 (LASSO
regression) and L2 (Ridge regression). They are controlled by a
hyperparameter λ.

	Слайд 1
	Слайд 2, Avoid Overfitting with Regularization
	Слайд 3
	Слайд 4
	Слайд 5
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15
	Слайд 16
	Слайд 17, Summary To summarise, in this class we’ve focused on three things:

