
Lecture 11: Computer Vision: Image Classification

with TensorFlow and Keras

Marat Nurtas
PhD in Mathematical and Computer Modeling

Department of Mathematical and Computer Modeling
International Information Technology University, Almaty, Kazakhstan

DL in Applied Mathematics

If you’re curious about how machine learning algorithms can classify
images with precision and accuracy, you’ve come to the right place.

In this lecture, we’ll delve deep into the world of image classification,
exploring the fundamentals of Convolutional Neural Networks (CNNs).

Image classification is a fascinating field that lies at the intersection of
computer vision and machine learning.

It enables machines to recognize and categorize objects, patterns, and
features within images, opening doors to a wide range of applications,
from medical diagnostics to autonomous vehicles.

In this lecture , we’ll explore the intricate workings of CNNs and their
role in identifying and classifying images.

We’ll be using TensorFlow and Keras that are the most popular
frameworks for building deep learning models, to develop robust and
efficient image classification systems.

We’ll cover essential topics such as data augmentation, transfer
learning, and model evaluation.

Dataset

We will be using eye disease dataset for this tutorial. To obtain the eye
disease classification dataset.

You can access it from Kaggle, a popular platform for data science
competitions, datasets, and machine learning resources.

Import Libraries

import system libs
import os
import time
import data handling tools
import cv2
import numpy as np
import pandas as pd
from PIL import Image
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report, f1_score

import Deep learning Libraries
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Model
from tensorflow.keras.metrics import categorical_crossentropy
from tensorflow.keras.preprocessing.image import
ImageDataGenerator
from tensorflow.keras.layers import Flatten, Dense, Activation,
GlobalAveragePooling2D

Ignore Warnings
import warnings
warnings.filterwarnings("ignore")

Class for Loading and Splitting Datasets

class EyeDiseaseDataset:
def __init__(self, dataDir):
self.data_dir = dataDir

def dataPaths(self):
filepaths = []
labels = []
folds = os.listdir(self.data_dir)
for fold in folds:
foldPath = os.path.join(self.data_dir, fold)
filelist = os.listdir(foldPath)
for file in filelist:
fpath = os.path.join(foldPath, file)
filepaths.append(fpath)
labels.append(fold)
return filepaths, labels

def dataFrame(self, files, labels):
Fseries = pd.Series(files, name='filepaths')
Lseries = pd.Series(labels, name='labels')
return pd.concat([Fseries, Lseries], axis=1)

def split_(self):
files, labels = self.dataPaths()
df = self.dataFrame(files, labels)
strat = df['labels']
trainData, dummyData = train_test_split(df, train_size=0.8, shuffle=True,
random_state=42, stratify=strat)
strat = dummyData['labels']
validData, testData = train_test_split(dummyData, train_size=0.5,
shuffle=True, random_state=42, stratify=strat)
return trainData, validData, testData

This Python code defines a class named EyeDiseaseDataset that
helps us to manage and preprocess dataset of eye disease images.

• __init__(self, dataDir): The constructor initializes the object with
the directory path dataDir, which is the root directory containing
the dataset.

• dataPaths(self): This method traverses the directory structure of
the dataset and collects file paths and corresponding labels. It
iterates through each fold (subdirectory) within the dataset
directory, collects file paths, and assigns labels based on the fold
names.

• dataFrame(self, files, labels): Constructs a Pandas DataFrame
from the collected file paths and labels, creating two Series: one
for file paths and another for labels.

• split_(self): This method splits the dataset into three subsets:
training, validation, and testing sets. It uses the train_test_split
function from Scikit-Learn to split the data while ensuring
stratified sampling based on the labels.

• It first splits the data into 80% training and 20% dummy data.
• Then, it splits the dummy data into 50% validation and 50% testing

sets.

The method returns three Data Frames: trainData, validData, and
testData, each containing file paths and corresponding labels for
their respective subsets.

dataDir='/content/dataset/’

dataSplit = EyeDiseaseDataset(dataDir)
train_data, valid_data, test_data = dataSplit.split_()

• dataDir='/content/dataset/': This is a directory path where the
dataset is located. It's specified as '/content/dataset/', indicating
that the dataset is stored in the 'dataset' folder.

• dataSplit = EyeDiseaseDataset(dataDir): Here, we initialize an
instance of the EyeDiseaseDataset class, passing the dataset
directory path as an argument.

• train_data, valid_data, test_data = dataSplit.split_(): Then we split
the dataset into three subsets: training, validation, and testing
data. The split_()

Function for Data Augmentation
def augment_data(train_df, valid_df, test_df, batch_size=32):
img_size = (256,256)
channels = 3
color = 'rgb'

train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(
rotation_range=30,
horizontal_flip=True,
vertical_flip=True,
brightness_range=[0.5, 1.5])

valid_test_datagen = tf.keras.preprocessing.image.ImageDataGenerator()

train_generator = train_datagen.flow_from_dataframe(
train_df,
x_col='filepaths',
y_col='labels',
target_size=img_size,
color_mode=color,
batch_size=batch_size,
shuffle=True,
class_mode='categorical’
)

print("Shape of augmented training images:",

train_generator.image_shape)

valid_generator = valid_test_datagen.flow_from_dataframe(
valid_df,
x_col='filepaths',
y_col='labels',
target_size=img_size,
color_mode=color,
batch_size=batch_size,
shuffle=True,
class_mode='categorical'
)

print("Shape of validation images:", valid_generator.image_shape)

test_generator = valid_test_datagen.flow_from_dataframe(
test_df,
x_col='filepaths',
y_col='labels',
target_size=img_size,
color_mode=color,
batch_size=batch_size,
shuffle=False,
class_mode='categorical'
)

print("Shape of test images:", test_generator.image_shape)

return train_generator, valid_generator, test_generator

The function augment_data takes three DataFrames (train_df,
valid_df, and test_df) containing file paths and labels of images.

It generates augmented image data using TensorFlow's
ImageDataGenerator and returns corresponding data generators for
training, validation, and testing.

Parameters:

• train_df: DataFrame containing file paths and labels for training
images.

• valid_df: DataFrame containing file paths and labels for validation
images.

• test_df: DataFrame containing file paths and labels for testing
images.

• batch_size: Batch size for training, validation, and testing data
generators (default is 32).

Image Augmentation:

• rotation_range: Range for random rotations applied to images
(here, 30 degrees).

• horizontal_flip and vertical_flip: Boolean indicating if random
horizontal and vertical flips should be applied.

• brightness_range: Range for adjusting brightness of images.

Data Generators:

• Three data generators are created using
ImageDataGenerator.flow_from_dataframe the method, one each for
training, validation, and testing.

• Each generator is configured with specific parameters:
• target_size: Target size for images after resizing.
• color_mode: Color mode for images ('rgb' for red-green-blue).
• batch_size: Number of images in each batch.
• shuffle: Whether to shuffle the data after each epoch.
• class_mode: Type of label array generated ('categorical' for categorical

labels).

Output:

• The function prints the shape of augmented training, validation,
and testing images.

• It returns three data generators: train_generator, valid_generator,
and test_generator, each containing augmented image data for
their respective sets.

train_augmented, valid_augmented, test_augmented =
augment_data(train_data, valid_data, test_data)

Display Augmented images

def show_images(gen):

g_dict = gen.class_indices

defines dictionary {'class': index}
classes = list(g_dict.keys())

defines list of dictionary's kays (classes), classes names : string
images, labels = next(gen)

get a batch size samples from the generator

length = len(labels)
sample = min(length, 20)
plt.figure(figsize= (15, 17))
for i in range(sample):

plt.subplot(5, 5, i + 1)
image = images[i] / 255
plt.imshow(image)
index = np.argmax(labels[i])
class_name = classes[index]
plt.title(class_name, color= 'blue', fontsize= 7)
plt.axis('off')

plt.show()
show_images(train_augmented)

Augmented Images

Augmented Images

Download and compile the model

from tensorflow.keras.applications import EfficientNetB3

classes = len(list(train_augmented.class_indices.keys()))

base_model = EfficientNetB3(weights='imagenet', include_top=False,
input_shape=(256, 256, 3))

for layer in base_model.layers:
layer.trainable = False
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)

predictions = Dense(classes, activation='softmax')(x)

model = Model(inputs=base_model.input, outputs=predictions)

optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=optimizer, loss='categorical_crossentropy',
metrics=['accuracy'])

Here we define a convolutional neural network (CNN) model using
transfer learning with EfficientNetB3 architecture pre-trained on
ImageNet. The model is then compiled for training.

Classes Calculation:

The number of classes is determined by extracting the keys of the
class indices from the train_augmented data generator. The number
of classes corresponds to the number of unique labels in the
training set.

Base Model Definition:

• The EfficientNetB3 architecture pre-trained on ImageNet is
instantiated using EfficientNetB3(weights='imagenet',
include_top=False, input_shape=(512, 512, 3)).

• include_top=False excludes the fully connected layers at the top
of the network, allowing for custom classification layers to be
added.

• input_shape=(512, 512, 3) specifies the input shape of the
images.

Freezing Base Model Layers:

• The layers of the pre-trained base model are set to non-trainable
using a loop over base_model.layers.

• This ensures that weights in the pre-trained layers are not updated
during training.

Model Customization:

• The output of the base model is passed through a global average
pooling layer to reduce spatial dimensions.

• A fully connected layer with 512 units and ReLU activation is added
for feature extraction.

• The final layer is a Dense layer with softmax activation, producing
class probabilities for the classification task.

Model Compilation:

• The model is compiled using the Adam optimizer with a learning rate
of 0.001.

• Categorical cross-entropy is chosen as the loss function, since it’s a
multi-class classification problem.

• Accuracy is used as the evaluation metric during training.

Fit the model

history = model.fit(
train_augmented,
epochs=10, #you can train the model for more epochs
validation_data=valid_augmented,
)

Plot the Accuracy and Loss

train_accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']
print("Training Accuracy:", train_accuracy[-1])
print("Validation Accuracy:", val_accuracy[-1])
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()

plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()

Training and Validation Accuracy:

The model achieved a final training accuracy of train_accuracy[-1]
and a validation accuracy of val_accuracy[-1] .
These metrics provide insights into how well the model learned
from the training data and its ability to generalize to unseen
validation data.

Loss Curve Analysis: By plotting the training and validation loss curves
over epochs, we observed the trend of loss reduction during training.

The convergence of training and validation loss indicates the
effectiveness of the model’s learning process and its ability to minimize
prediction errors.

Accuracy Curve Analysis: The accuracy curves plotted against epochs
demonstrated the model’s improvement in correctly classifying images
over the training and validation datasets.

A consistent increase in accuracy suggests successful model learning
and adaptation to the dataset characteristics.

Plots:

Display the Actual and Predicted images

def plot_actual_vs_predicted(model, test_data, num_samples=3):
Get a batch of test data
test_images, test_labels = next(iter(test_data))

predictions = model.predict(test_images)

class_labels = list(train_augmented.class_indices.keys())

sample_indices = np.random.choice(range(len(test_images)),
num_samples, replace=False)
Plot the images with actual and predicted labels
for i in sample_indices:
actual_label = class_labels[np.argmax(test_labels[i])]
predicted_label = class_labels[np.argmax(predictions[i])]
plt.figure(figsize=(8, 4))

Actual Image
plt.subplot(1, 2, 1)
plt.imshow(test_images[i].astype(np.uint8))
plt.title(f'Actual: {actual_label}')
plt.axis('off')

Predicted Image
plt.subplot(1, 2, 2)
plt.imshow(test_images[i].astype(np.uint8))
plt.title(f'Predicted: {predicted_label}')
plt.axis('off')
plt.show()

plot_actual_vs_predicted(model, test_augmented)

And that’s it for our look into eye disease classification models! I hope
you’ve found these insights helpful in understanding how machine
learning can help with eye conditions.

By learning about how these models work, we’re all one step closer to
improving eye care for everyone.

As we move forward, let’s remember that making healthcare better is
something we can all contribute to.

By using the tools and ideas we’ve talked about, we can work together
to make eye care even better for people everywhere.

Thank you for attention!

	Слайд 1
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5, Dataset
	Слайд 6, Import Libraries
	Слайд 7
	Слайд 8, Class for Loading and Splitting Datasets
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14, Function for Data Augmentation
	Слайд 15
	Слайд 16
	Слайд 17
	Слайд 18
	Слайд 19, Parameters:
	Слайд 20, Image Augmentation:
	Слайд 21, Data Generators:
	Слайд 22, Output:
	Слайд 23, Display Augmented images
	Слайд 24
	Слайд 25
	Слайд 26
	Слайд 27, Download and compile the model
	Слайд 28
	Слайд 29
	Слайд 30, Base Model Definition:
	Слайд 31, Freezing Base Model Layers:
	Слайд 32, Model Customization:
	Слайд 33, Model Compilation:
	Слайд 34, Fit the model
	Слайд 35, Plot the Accuracy and Loss
	Слайд 36
	Слайд 37, Training and Validation Accuracy:
	Слайд 38
	Слайд 39, Plots:
	Слайд 40, Display the Actual and Predicted images
	Слайд 41
	Слайд 42
	Слайд 43
	Слайд 44
	Слайд 45
	Слайд 46
	Слайд 47

