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If you’re curious about how machine learning algorithms can classify 
images with precision and accuracy, you’ve come to the right place.

In this lecture, we’ll delve deep into the world of image classification, 
exploring the fundamentals of Convolutional Neural Networks (CNNs).

Image classification is a fascinating field that lies at the intersection of 
computer vision and machine learning.

It enables machines to recognize and categorize objects, patterns, and 
features within images, opening doors to a wide range of applications, 
from medical diagnostics to autonomous vehicles.



In this lecture , we’ll explore the intricate workings of CNNs and their 
role in identifying and classifying images. 

We’ll be using TensorFlow and Keras that are the most popular 
frameworks for building deep learning models, to develop robust and 
efficient image classification systems.

We’ll cover essential topics such as data augmentation, transfer 
learning, and model evaluation.



Dataset

We will be using eye disease dataset for this tutorial. To obtain the eye 
disease classification dataset. 

You can access it from Kaggle, a popular platform for data science 
competitions, datasets, and machine learning resources.



Import Libraries

# import system libs
import os
import time
# import data handling tools
import cv2
import numpy as np
import pandas as pd
from PIL import Image
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report, f1_score



# import Deep learning Libraries
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Model
from tensorflow.keras.metrics import categorical_crossentropy
from tensorflow.keras.preprocessing.image import
ImageDataGenerator
from tensorflow.keras.layers import Flatten, Dense, Activation, 
GlobalAveragePooling2D

# Ignore Warnings
import warnings
warnings.filterwarnings("ignore")



Class for Loading and Splitting Datasets

class EyeDiseaseDataset:
def __init__(self, dataDir):
self.data_dir = dataDir

def dataPaths(self):
filepaths = []
labels = []
folds = os.listdir(self.data_dir)
for fold in folds:
foldPath = os.path.join(self.data_dir, fold)
filelist = os.listdir(foldPath)
for file in filelist:
fpath = os.path.join(foldPath, file)
filepaths.append(fpath)
labels.append(fold)
return filepaths, labels



def dataFrame(self, files, labels):
Fseries = pd.Series(files, name='filepaths')
Lseries = pd.Series(labels, name='labels')
return pd.concat([Fseries, Lseries], axis=1)

def split_(self):
files, labels = self.dataPaths()
df = self.dataFrame(files, labels)
strat = df['labels']
trainData, dummyData = train_test_split(df, train_size=0.8, shuffle=True, 
random_state=42, stratify=strat)
strat = dummyData['labels']
validData, testData = train_test_split(dummyData, train_size=0.5, 
shuffle=True, random_state=42, stratify=strat)
return trainData, validData, testData



This Python code defines a class named EyeDiseaseDataset that 
helps us to manage and preprocess dataset of eye disease images.

• __init__(self, dataDir): The constructor initializes the object with 
the directory path dataDir, which is the root directory containing 
the dataset.

• dataPaths(self): This method traverses the directory structure of 
the dataset and collects file paths and corresponding labels. It 
iterates through each fold (subdirectory) within the dataset 
directory, collects file paths, and assigns labels based on the fold 
names.



• dataFrame(self, files, labels): Constructs a Pandas DataFrame
from the collected file paths and labels, creating two Series: one 
for file paths and another for labels.

• split_(self): This method splits the dataset into three subsets: 
training, validation, and testing sets. It uses the train_test_split
function from Scikit-Learn to split the data while ensuring 
stratified sampling based on the labels.

• It first splits the data into 80% training and 20% dummy data.
• Then, it splits the dummy data into 50% validation and 50% testing 

sets.



The method returns three Data Frames: trainData, validData, and 
testData, each containing file paths and corresponding labels for 
their respective subsets.

dataDir='/content/dataset/’

dataSplit = EyeDiseaseDataset(dataDir)
train_data, valid_data, test_data = dataSplit.split_()



• dataDir='/content/dataset/': This is a directory path where the 
dataset is located. It's specified as '/content/dataset/', indicating 
that the dataset is stored in the 'dataset' folder.

• dataSplit = EyeDiseaseDataset(dataDir): Here, we initialize an 
instance of the EyeDiseaseDataset class, passing the dataset 
directory path as an argument.

• train_data, valid_data, test_data = dataSplit.split_(): Then we split 
the dataset into three subsets: training, validation, and testing 
data. The split_()



Function for Data Augmentation
def augment_data( train_df, valid_df, test_df, batch_size=32): 
img_size = (256,256)
channels = 3
color = 'rgb'

train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(
rotation_range=30,
horizontal_flip=True,
vertical_flip=True,
brightness_range=[0.5, 1.5])

valid_test_datagen = tf.keras.preprocessing.image.ImageDataGenerator()



train_generator = train_datagen.flow_from_dataframe(
train_df,
x_col='filepaths',
y_col='labels',
target_size=img_size,
color_mode=color,
batch_size=batch_size,
shuffle=True,
class_mode='categorical’
)

print("Shape of augmented training images:",

train_generator.image_shape)



valid_generator = valid_test_datagen.flow_from_dataframe(
valid_df,
x_col='filepaths',
y_col='labels',
target_size=img_size,
color_mode=color,
batch_size=batch_size,
shuffle=True,
class_mode='categorical'
)

print("Shape of validation images:", valid_generator.image_shape)



test_generator = valid_test_datagen.flow_from_dataframe(
test_df,
x_col='filepaths',
y_col='labels',
target_size=img_size,
color_mode=color,
batch_size=batch_size,
shuffle=False,
class_mode='categorical'
)

print("Shape of test images:", test_generator.image_shape)

return train_generator, valid_generator, test_generator



The function augment_data takes three DataFrames (train_df, 
valid_df, and test_df) containing file paths and labels of images. 

It generates augmented image data using TensorFlow's 
ImageDataGenerator and returns corresponding data generators for 
training, validation, and testing.



Parameters:

• train_df: DataFrame containing file paths and labels for training 
images.

• valid_df: DataFrame containing file paths and labels for validation 
images.

• test_df: DataFrame containing file paths and labels for testing 
images.

• batch_size: Batch size for training, validation, and testing data 
generators (default is 32).



Image Augmentation:

• rotation_range: Range for random rotations applied to images 
(here, 30 degrees).

• horizontal_flip and vertical_flip: Boolean indicating if random 
horizontal and vertical flips should be applied.

• brightness_range: Range for adjusting brightness of images.



Data Generators:

• Three data generators are created using 
ImageDataGenerator.flow_from_dataframe the method, one each for 
training, validation, and testing.

• Each generator is configured with specific parameters:
• target_size: Target size for images after resizing.
• color_mode: Color mode for images ('rgb' for red-green-blue).
• batch_size: Number of images in each batch.
• shuffle: Whether to shuffle the data after each epoch.
• class_mode: Type of label array generated ('categorical' for categorical 

labels).



Output:

• The function prints the shape of augmented training, validation, 
and testing images.

• It returns three data generators: train_generator, valid_generator, 
and test_generator, each containing augmented image data for 
their respective sets.

train_augmented, valid_augmented, test_augmented = 
augment_data(train_data, valid_data, test_data)



Display Augmented images

def show_images(gen):

g_dict = gen.class_indices

# defines dictionary {'class': index}
classes = list(g_dict.keys()) 

# defines list of dictionary's kays (classes), classes names : string
images, labels = next(gen) 

# get a batch size samples from the generator



length = len(labels)        
sample = min(length, 20)   
plt.figure(figsize= (15, 17))
for i in range(sample):

plt.subplot(5, 5, i + 1)
image = images[i] / 255      
plt.imshow(image)
index = np.argmax(labels[i])  
class_name = classes[index]  
plt.title(class_name, color= 'blue', fontsize= 7 )
plt.axis('off')

plt.show()
show_images(train_augmented)



Augmented Images



Augmented Images



Download and compile the model

from tensorflow.keras.applications import EfficientNetB3

classes = len(list(train_augmented.class_indices.keys()))

base_model = EfficientNetB3(weights='imagenet', include_top=False, 
input_shape=(256, 256, 3))

for layer in base_model.layers:
layer.trainable = False
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)



predictions = Dense(classes, activation='softmax')(x)

model = Model(inputs=base_model.input, outputs=predictions)

optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=optimizer, loss='categorical_crossentropy', 
metrics=['accuracy'])



Here we define a convolutional neural network (CNN) model using 
transfer learning with EfficientNetB3 architecture pre-trained on 
ImageNet. The model is then compiled for training.

Classes Calculation:

The number of classes is determined by extracting the keys of the 
class indices from the train_augmented data generator. The number 
of classes corresponds to the number of unique labels in the 
training set.



Base Model Definition:

• The EfficientNetB3 architecture pre-trained on ImageNet is 
instantiated using EfficientNetB3(weights='imagenet', 
include_top=False, input_shape=(512, 512, 3)).

• include_top=False excludes the fully connected layers at the top 
of the network, allowing for custom classification layers to be 
added.

• input_shape=(512, 512, 3) specifies the input shape of the 
images.



Freezing Base Model Layers:

• The layers of the pre-trained base model are set to non-trainable 
using a loop over base_model.layers. 

• This ensures that weights in the pre-trained layers are not updated 
during training.



Model Customization:

• The output of the base model is passed through a global average 
pooling layer to reduce spatial dimensions.

• A fully connected layer with 512 units and ReLU activation is added 
for feature extraction.

• The final layer is a Dense layer with softmax activation, producing 
class probabilities for the classification task.



Model Compilation:

• The model is compiled using the Adam optimizer with a learning rate 
of 0.001.

• Categorical cross-entropy is chosen as the loss function, since it’s a 
multi-class classification problem.

• Accuracy is used as the evaluation metric during training.



Fit the model

history = model.fit(
train_augmented,
epochs=10, #you can train the model for more epochs
validation_data=valid_augmented,
)



Plot the Accuracy and Loss

train_accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']
print("Training Accuracy:", train_accuracy[-1])
print("Validation Accuracy:", val_accuracy[-1])
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()



plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()



Training and Validation Accuracy:

The model achieved a final training accuracy of train_accuracy[-1] 
and a validation accuracy of val_accuracy[-1] . 
These metrics provide insights into how well the model learned 
from the training data and its ability to generalize to unseen 
validation data.



Loss Curve Analysis: By plotting the training and validation loss curves 
over epochs, we observed the trend of loss reduction during training. 

The convergence of training and validation loss indicates the 
effectiveness of the model’s learning process and its ability to minimize 
prediction errors.

Accuracy Curve Analysis: The accuracy curves plotted against epochs 
demonstrated the model’s improvement in correctly classifying images 
over the training and validation datasets. 

A consistent increase in accuracy suggests successful model learning 
and adaptation to the dataset characteristics.



Plots:



Display the Actual and Predicted images

def plot_actual_vs_predicted(model, test_data, num_samples=3):
# Get a batch of test data
test_images, test_labels = next(iter(test_data))

predictions = model.predict(test_images)

class_labels = list(train_augmented.class_indices.keys())



sample_indices = np.random.choice(range(len(test_images)), 
num_samples, replace=False)
# Plot the images with actual and predicted labels
for i in sample_indices:
actual_label = class_labels[np.argmax(test_labels[i])]
predicted_label = class_labels[np.argmax(predictions[i])]
plt.figure(figsize=(8, 4))

# Actual Image
plt.subplot(1, 2, 1)
plt.imshow(test_images[i].astype(np.uint8)) 
plt.title(f'Actual: {actual_label}')
plt.axis('off')



# Predicted Image
plt.subplot(1, 2, 2)
plt.imshow(test_images[i].astype(np.uint8)) 
plt.title(f'Predicted: {predicted_label}')
plt.axis('off')
plt.show()

plot_actual_vs_predicted(model, test_augmented)









And that’s it for our look into eye disease classification models! I hope 
you’ve found these insights helpful in understanding how machine 
learning can help with eye conditions. 

By learning about how these models work, we’re all one step closer to 
improving eye care for everyone.

As we move forward, let’s remember that making healthcare better is 
something we can all contribute to. 

By using the tools and ideas we’ve talked about, we can work together 
to make eye care even better for people everywhere.



Thank you for attention!
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