
Lecture 12: Reinforcement Learning

Marat Nurtas
Associate professor of IITU, PhD in Mathematical and Computer Modeling

Department of Mathematical and Computer Modeling
International Information Technology University, Almaty, Kazakhstan

DL in Applied Mathematics



Reinforcement Learning (RL) is one of the most exciting fields of 

Machine Learning today, and also one of the oldest. It has been around 

since the 1950s, producing many interesting applications over the years,

in particular in games (e.g., TD-Gammon, a Backgammon playing

program) and in machine control, but seldom making the headline news. 

But a revolution took place in 2013 when researchers from an English

startup called DeepMind demonstrated a system that could learn to play 

just about any Atari game from scratch, eventually outperforming 

humans in most of them, using only raw pixels as inputs and without any 

prior knowledge of the rules of the games.

https://goo.gl/hceDs5
https://goo.gl/hceDs5
https://goo.gl/hceDs5
https://goo.gl/hgpvz7
https://goo.gl/hgpvz7


In Reinforcement Learning, a software agent makes observations and takes actions

within an environment, and in return it receives rewards. Its objective is to learn to

act in a way that will maximize its expected long-term rewards.

Learning to Optimize Rewards

This is quite a broad setting, which can apply to a wide variety of tasks. Here are a few

examples (see Figure 16-1):

Figure 16-1. Reinforcement Learning examples: (a) walking robot, (b) Ms. Pac-Man, (c) Go player, (d)

thermostat, (e) automatic trader



How would you train such a robot? There are just two policy parameters you can tweak: the

probability p and the angle range r. One possible learning algorithm could be to try out many

different values for these parameters, and pick the combination that performs best (see Figure

16-3).

Policy Search

Figure 16-3. Four points in policy space and the agent’s corresponding behavior



OpenAI gym8 is a toolkit that provides a wide variety of simulated environments

(Atari games, board games, 2D and 3D physical simulations, and so on), so you

can train agents, compare them, or develop new RL algorithms.

Introduction to OpenAI Gym

Let’s install OpenAI gym. For a minimal OpenAI gym installation, simply use

pip:

$ pip3 install --upgrade gym

Next open up a Python shell or a Jupyter notebook and create your first

environment:

>>> import gym

>>> env = gym.make("CartPole-v0")
[2016-10-14 16:03:23,199] Making new env: MsPacman-v0
>>> obs = env.reset()
>>> obs
array([-0.03799846, -0.03288115, 0.02337094, 0.00720711])
>>> env.render()

https://gym.openai.com/


Introduction to OpenAI Gym

The make() function creates an environment, in this case a CartPole 

environment. This is a 2D simulation in which a cart can be accelerated left or 

right in order to balance a pole placed on top of it (see Figure 16-4). 

The render() method displays the environment as shown in Figure 16-4.

Figure 16-4. The CartPole environment



Neural Network Policies

Let’s create a neural network policy. Just like the policy we hardcoded earlier, this neural 

network will take an observation as input, and it will output the action to be executed. More 

precisely, it will estimate a probability for each action, and then we will select an action

randomly according to the estimated probabilities (see Figure 16-5). 

Figure 16-5. Neural network policy



Neural Network Policies
Here is the code to build this neural network policy using TensorFlow:

import tensorflow as tf

from tensorflow.contrib.layers import fully_connected

# 1. Specify the neural network architecture

n_inputs = 4 #  == env.observation_space.shape[0]

n_hidden = 4 # it's a simple task, we don't need more hidden neurons n_outputs = 1 # only outputs the probability 

of accelerating left initializer = tf.contrib.layers.variance_scaling_initializer()

# 2. Build the neural network

X = tf.placeholder(tf.float32, shape=[None, n_inputs])
hidden = fully_connected(X, n_hidden, activation_fn=tf.nn.elu,
weights_initializer=initializer) logits = fully_connected(hidden, n_outputs, activation_fn=None,
weights_initializer=initializer) outputs = tf.nn.sigmoid(logits)

# 3. Select a random action based on the estimated probabilities 

p_left_and_right = tf.concat(axis=1, values=[outputs, 1 - outputs]) action = 
tf.multinomial(tf.log(p_left_and_right), num_samples=1)

init = tf.global_variables_initializer()



Evaluating Actions: The Credit

Assignment Problem

This is called the credit assignment problem: when the agent gets a reward, it is hard

for it to know which actions should get credited (or blamed) for it. Think of a dog that

gets rewarded hours after it behaved well; will it understand what it is rewarded for?

Figure 16-6. Discounted rewards

To tackle this problem, a common strategy is to evaluate an action based on the sum of all the

rewards that come after it, usually applying a discount rate r at each step. For example (see

Figure 16-6)



Evaluating Actions: The Credit

Assignment Problem

This is called the credit assignment problem: when the agent gets a reward, it is hard

for it to know which actions should get credited (or blamed) for it. Think of a dog that

gets rewarded hours after it behaved well; will it understand what it is rewarded for?

Figure 16-6. Discounted rewards

To tackle this problem, a common strategy is to evaluate an action based on the sum of all the

rewards that come after it, usually applying a discount rate r at each step. For example (see

Figure 16-6)



Policy Gradients

As discussed earlier, PG algorithms optimize the parameters of a policy by following

the gradients toward higher rewards. One popular class of PG algorithms, called

REINFORCE algorithms, was introduced back in 1992 by Ronald Williams. Here is

one common variant:

1.First, let the neural network policy play the game several times and at each step compute the

gradients that would make the chosen action even more likely, but don’t apply these gradients yet.

2.Once you have run several episodes, compute each action’s score (using the method described in

the previous paragraph).

3.If an action’s score is positive, it means that the action was good and you want to apply the

gradients computed earlier to make the action even more likely to be chosen in the future. However,

if the score is negative, it means the action was bad and you want to apply the opposite gradients to

make this action slightly less likely in the future. The solution is simply to multiply each gradient

vector by the corresponding action’s score.

4.Finally, compute the mean of all the resulting gradient vectors, and use it to perform a Gradient

Descent step.

https://goo.gl/tUe4Sh


Markov Decision Processes

In the early 20th century, the mathematician Andrey Markov studied stochastic

processes with no memory, called Markov chains. Such a process has a fixed number

of states, and it randomly evolves from one state to another at each step. The

probability for it to evolve from a state s to a state s′ is fixed, and it depends only on

the pair (s,s′), not on past states (the system has no memory).

Figure 16-7. Example of a Markov chain



Markov Decision Processes

In the early 20th century, the mathematician Andrey Markov studied stochastic

processes with no memory, called Markov chains. Such a process has a fixed number

of states, and it randomly evolves from one state to another at each step. The

probability for it to evolve from a state s to a state s′ is fixed, and it depends only on

the pair (s,s′), not on past states (the system has no memory).

Figure 16-7. Example of a Markov chain



Markov Decision Processes

Markov decision processes were first described in the 1950s by Richard Bellman.11

They resemble Markov chains but with a twist: at each step, an agent can choose one

of several possible actions, and the transition probabilities depend on the chosen

action. Moreover, some state transitions return some reward (positive or negative), and

the agent’s goal is to find a policy that will maximize rewards over time.

For example, the MDP represented in Figure 16-8 has three states and up to three possible discrete 

actions at each step. 

Figure 16-8. Example of a Markov decision process

https://goo.gl/wZTVIN


Markov Decision Processes
Bellman found a way to estimate the optimal state value of any state s, noted V*(s), which is the sum

of all discounted future rewards the agent can expect on average after it reaches a state s, assuming it

acts optimally. He showed that if the agent acts optimally, then the Bellman Optimality Equation

applies (see Equation 16-1).



Markov Decision Processes

This equation leads directly to an algorithm that can precisely estimate the optimal

state value of every possible state: you first initialize all the state value estimates to

zero, and then you iteratively update them using the Value Iteration algorithm (see

Equation 16-2). A remarkable result is that, given enough time, these estimates are

guaranteed to converge to the optimal state values, corresponding to the optimal pol

icy.

This algorithm is an example of Dynamic Programming



Markov Decision Processes

Here is how it works: once again, you start by initializing all the Q-Value estimates to

zero, then you update them using the Q-Value Iteration algorithm (see Equation 16-3).



Markov Decision Processes

Let’s apply this algorithm to the MDP represented in Figure 16-8. First, we need to

define the MDP:



Markov Decision Processes



Markov Decision Processes



Markov Decision Processes

This gives us the optimal policy for this MDP, when using a discount rate of

0.95: in state s0 choose action a0, in state s1 choose action a2 (go through the

fire!), and in state s2 choose action a1 (the only possible action). Interestingly, if

you reduce the discount rate to 0.9, the optimal policy changes: in state s1 the

best action becomes a0 (stay put; don’t go through the fire). It makes sense

because if you value the present much more than the future, then the prospect of

future rewards is not worth immediate pain.

Result


	Слайд 1
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15
	Слайд 16
	Слайд 17
	Слайд 18
	Слайд 19
	Слайд 20
	Слайд 21

