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The Temporal Difference Learning (TD Learning) algorithm

is very similar to the Value Iteration algorithm, but tweaked to

take into account the fact that the agent has only partial

knowledge of the MDP. In general we assume that the agent

initially knows only the possible states and actions, and

nothing more.



Similarly, the Q-Learning algorithm is an adaptation of the Q-Value Iteration

algorithm to the situation where the transition probabilities and the rewards

are initially unknown (see Equation 16-5).



Here is how Q-Learning can be implemented:



Exploration Policies

Alternatively, rather than relying on chance for exploration, another approach is to

encourage the exploration policy to try actions that it has not tried much before. This can be

implemented as a bonus added to the Q-Value estimates, as shown in Equation 16-6.



Approximate Q-Learning

The main problem with Q-Learning is that it does not scale

well to large (or even medium) MDPs with many states and

actions.

The solution is to find a function that approximates the Q-

Values using a manageable number of parameters. This is 

called Approximate Q-Learning. 

A DNN used to estimate Q-Values is called a deep Q-

network (DQN), and using a DQN for Approximate Q-

Learning is called Deep Q-Learning.



Learning to Play Ms. Pac-Man

Using Deep Q-Learning

Figure 16-9. Ms. Pac-Man observation, original (left) and after preprocessing (right)

mspacman_color = np.array([210, 164, 74]).mean()

def preprocess_observation(obs):

img = obs[1:176:2, ::2] # crop and downsize

img = img.mean(axis=2) #  to  greyscale

img[img==mspacman_color] = 0 #  improve  contrast

img = (img - 128) / 128 - 1 # normalize from -1. to 1.

return img.reshape(88, 80, 1)
The result of preprocessing is shown in Figure 16-9 (right).

This will reduce the amount of computations required by the DQN, and speed up training.
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Using Deep Q-Learning

The DQN will be composed of three convolutional layers, followed by two fully 

connected layers, including the output layer (see Figure 16-10).

Figure 16-10. Deep Q-network to play Ms. Pac-Man
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Using Deep Q-Learning
Since we need two identical DQNs, we will create a q_network() function to build them:
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The trainable_vars_by_name dictionary gathers all the trainable variables of this DQN. It will be

useful in a minute when we create operations to copy the critic DQN to the actor DQN. The keys of the

dictionary are the names of the variables, stripping the part of the prefix that just corresponds to the

scope’s name. It looks like this:
>>> trainable_vars_by_name
{'/Conv/biases:0': <tensorflow.python.ops.variables.Variable at 0x121cf7b50>, 
'/Conv/weights:0': <tensorflow.python.ops.variables.Variable...>, '/Conv_1/biases:0': 
<tensorflow.python.ops.variables.Variable...>, '/Conv_1/weights:0': 
<tensorflow.python.ops.variables.Variable...>, '/Conv_2/biases:0': 
<tensorflow.python.ops.variables.Variable...>, '/Conv_2/weights:0': 
<tensorflow.python.ops.variables.Variable...>, '/fully_connected/biases:0': 
<tensorflow.python.ops.variables.Variable...>, '/fully_connected/weights:0': 
<tensorflow.python.ops.variables.Variable...>, '/fully_connected_1/biases:0': 
<tensorflow.python.ops.variables.Variable...>, '/fully_connected_1/weights:0': 
<tensorflow.python.ops.variables.Variable...>}
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Using Deep Q-Learning

Now let’s create the input placeholder, the two DQNs, and the operation to copy the critic

DQN to the actor DQN:

X_state = tf.placeholder(tf.float32, shape=[None, input_height, 
input_width,

input_channels]) actor_q_values, actor_vars = q_network(X_state, 
scope="q_networks/actor")

critic_q_values, critic_vars = q_network(X_state, 
scope="q_networks/critic")

copy_ops = [actor_var.assign(critic_vars[var_name])
for var_name, actor_var in actor_vars.items()] copy_critic_to_actor = 
tf.group(*copy_ops)
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Using Deep Q-Learning

Then just sum over the first axis to obtain only the desired Q-

Value prediction for each memory.

X_action = tf.placeholder(tf.int32, shape=[None])

q_value = tf.reduce_sum(critic_q_values * 
tf.one_hot(X_action, n_outputs),
axis=1, keep_dims=True)



Learning to Play Ms. Pac-Man

Using Deep Q-Learning

Plus we create the usual init operation and a Saver.
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Using Deep Q-Learning

We will also write a small function to randomly sample a batch of

experiences from the replay memory:
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Using Deep Q-Learning

Next, we will need the actor to explore the game. We will use the ε-

greedy policy, and gradually decrease ε from 1.0 to 0.05, in 50,000 

training steps:

eps_min = 0.05
eps_max = 1.0
eps_decay_steps = 50000
def epsilon_greedy(q_values, step):

epsilon = max(eps_min, eps_max - (eps_max-
eps_min) * step/eps_decay_steps)
if rnd.rand() < epsilon:

return rnd.randint(n_outputs) # random action

else:
return np.argmax(q_values) # optimal action
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Using Deep Q-Learning

That’s it! We have all we need to start training. The execution phase does not

contain anything too complex, but it is a bit long, so take a deep breath. Ready?

Let’s go! First, let’s initialize a few variables:

n_steps = 100000 # total number of training steps

training_start = 1000 # start training after 1,000 game iterations 

training_interval = 3 # run a training step every 3 game iterations 

save_steps = 50 # save the model every 50 training steps

copy_steps = 25  # copy the critic to the actor every 25 training steps

discount_rate = 0.95
skip_start = 90 # skip the start of every game (it's just waiting time)

batch_size = 50
iteration = 0 # game iterations 

checkpoint_path = "./my_dqn.ckpt" 
done = True # env needs to be reset
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Using Deep Q-Learning
Next, let’s open the session and run the main training loop:
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▪ We start by restoring the models if a checkpoint file exists, or else we just initialize the variables normally.

▪ Then the main loop starts, where iteration counts the total number of game steps we have gone through since

the program started, and step counts the total number of training steps since training started (if a checkpoint is

restored, the global step is restored as well).

▪ Then the code resets the game (and skips the first boring game steps, where nothing happens).

▪ Next, the actor evaluates what to do, and plays the game, and its experience is memorized in replay memory.

▪ Then, at regular intervals (after a warmup period), the critic goes through a training step. It samples a batch of

memories and asks the actor to estimate the Q-Values of all actions for the next state, and it applies Equation 16-

7 to compute the target Q-Value y_val.

▪ The only tricky part here is that we must multiply the next state’s Q-Values by the continues vector to zero

out the Q-Values corresponding to memories where the game was over.

▪ Next we run a training operation to improve the critic’s ability to predict Q-Values.

▪ Finally, at regular intervals we copy the critic to the actor, and we save the model.

Algorithm



Unfortunately, training is very slow: if you use your laptop for

training, it will take days before Ms. Pac-Man gets any good,

and if you look at the learning curve, measuring the average

rewards per episode, you will notice that it is extremely noisy.

In any case, RL still requires quite a lot of patience and

tweaking, but the end result is very exciting.
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