
DL in Applied Mathematics

Lecture 8: Convolutional Neural Networks

• commonly referred to as CNNs are a specialized type of neural
network designed to process and classify images.

• If you are new to this field you might be thinking how is it possible to
classify an image?

Well… images are also numbers!

Digital images are essentially grids of tiny units called pixels. Each pixel
represents the smallest unit of an image and holds information about
the color and intensity at that particular point.

Digital images are essentially grids of tiny units called
pixels. Each pixel represents the smallest unit of an image

and holds information about the color and intensity at
that particular point.

Typically, each pixel is composed of three values corresponding to
the red, green, and blue (RGB) color channels. These values determine
the color and intensity of that pixel.

In contrast, in a grayscale image, each pixel carries a single value
that represents the intensity of light at that point.
Usually ranging from black (0) to white (255).

How do CNNs work?
To understand how a CNN functions let´s recap some of the basic
concepts about Neural Networks.

1.- Neurons: The most basic unit in a neural network. They are
composed of a sum of linear functions and a non-linear
function known as the activation function is applied to them.

2.- Input layer: Each neuron in the input layer corresponds to one of the
input features.
For instance, in an image classification task where the input is a 28 x 28-
pixel image, the input layer would have 784 neurons (one for each pixel).

3.- Hidden Layer: The layers between the input and the output layer.
Each neuron in this layer is summed by the result of the neurons in the
previous layers and multiplied by a non-linear function.

4.- Output Layer: The number of neurons in the output layer
corresponds to the number of output classes (In case we are facing
a regression problem the output layer will only have one neuron).

For example, in a
classification task
with digits from 0
to 9, the output
layer would
have 10 neurons

• Once a prediction is made, a loss is calculated and the network
enters a self-improvement iterative process through which the
weights are adjusted with backpropagation to reduce this error.

• Now we are ready to understand convolutional neural networks!

The first question we should ask ourselves:

What makes a CNN different from a basic neural network?

https://medium.com/towards-artificial-intelligence/backpropagation-2eeb25201095

Convolutional layers

They are the fundamental building blocks of CNNs. These layers
perform a critical mathematical operation known as convolution.

This process entails the application of specialized filters known as
kernels, that traverse through the input image to learn complex
visual patterns.

Kernels
They are essentially small
matrices of numbers. These
filters move across the image
performing element-wise
multiplication with the part of
the image they cover, extracting
features such as edges,
textures, and shapes.
In the figure, visualize the input
as an image transformed into
pixels.

We multiply each term of the image by a 3 × 3 matrix (this shape can
vary) and pass it into an output matrix.

There are various methods to decide the digits inside the kernel.
This will depend on the effect you want to achieve such as detecting
edges, blurring, sharpening…

Why is it so useful?
We are just multiplying and adding pixels

Convolution Operation
The convolution operation involves multiplying the kernel values by
the original pixel values of the image and then summing up the
results.
This is a basic example with a 2 × 2 kernel:

We start in the left corner of the input:
(0 × 0) + (1 × 1) + (3 × 2) + (4 × 3) = 19

Then we slice one pixel to the right and perform the same operation:
(1 × 0) + (2 × 1) + (4 × 2) + (5 × 3) = 25

After we completed the first row we move one pixel down and start
again from the left:

(3 × 0) + (4 × 1) + (6 × 2) + (7 × 3) = 37
Finally, we again slice one pixel to the right:

(4 × 0) + (5 × 1) + (7 × 2) + (8 × 3) = 43
The output matrix of this process is known as the Feature map.

We understand how a convolution works, but:

• Kernels always traverse through the image matrix one pixel at a
time?

• What happens with the pixels in the corners, we are only passing
over them one time, what if they have an important feature?

• And what about RGB images? We stated that they are
represented in 3 dimensions, how does the kernel traverse over
them?

We’ll start by understanding three essential components inside
convolutional layers:
• 1.- Channels
As i explained before, digital images are often composed of three
channels (RGB) which are represented in three different matrices.

For an RGB image, there are typically separate kernels for each
color channel because different features might be more visible or
relevant in one channel compared to the others.

Depth of the layer

The ‘depth’ of a layer refers to the number of kernels it contains.
Each filter produces a separate feature map, and the collection of
these feature maps forms the complete output of the layer.
The output normally has multiple channels, where each channel is
a feature map corresponding to a particular kernel.
In the case of RGB, we typically use one channel for each of the 3
matrices, but we can add as many as we want.
For example, let´s say that you have a gray-scale image of a cat,
you could create a channel specialized in detecting the ears and
another in the mouth.

This image illustrates the concept quite well, think of each layer in
the convolution as a feature map with a different kernel

• BE CAREFUL with misunderstanding the channels in the
convolution layer with the color channels in the image. That was a
representative example to understand the concept but you can
add as many channels as you want.

• Each channel will detect a different feature in the image based
on the values you assign to its kernel.

2.- Stride

We have discussed that in a convolution a kernel moves through the
pixels of an image, but we haven´t talked about the different ways
in which it can do it.

Stride refers to the number of pixels by which a kernel moves
across the input image.
The example we saw before had a stride of 1, but this can change.

• Stride = 1

• Stride = 2

A stride of 2 not only changes the way the convolution iterates over the
input size but also the output by making it smaller (2 × 2).
Taking this into account we can conclude that:
A larger stride will produce smaller output dimensions (as it covers the
input image faster), whereas a smaller stride results in a larger output
dimension.

But why would we want to change the stride?
• Increasing the stride will allow the filter to cover a larger area of the

input image, which can be useful for capturing more global
features.

• In contrast, lowering the stride will capture finer and more local
details.

• In addition, increasing the stride will control overfitting and reduce
computational efficiency as it will reduce the spatial dimensions of
the feature map.

3.- Padding

Padding refers to the addition of extra pixels around the edge of
the input image.
When you focus on the pixels in the image’s edges, you’ll notice
that we traverse them fewer times compared to those positioned
in the center.
The purpose of padding is to adjust the spatial size of the output of
a convolutional operation and to preserve spatial information at
the borders.

• Padding = 0 (focus on the edges and count how many times the
kernel is passing through them)

• Padding = 1

Now we are passing more times through the pixels in the edges and
getting more information about them.

In which cases do you want to apply padding?
Mainly when the edges of the image contain useful
information that you want to capture. You can increase the padding
up to the kernel size you are using.
And how does it affect the output field?
Padding increases the size of the output feature map. If you
increase the padding while keeping the kernel size and stride
constant, the convolution operation has more “room” to take
place, resulting in a larger output.

The output size of a convolutional layer can be calculated using the
following formula:

• Where
• “2 × Padding” accounts for padding applied to both the left and

right sides (or top and bottom sides) of the input.
• “+ 1” accounts for the initial position of the filter, which starts at

the beginning of the padded input.

• This is a visual explanation of Padding but at a practical level, it
doesn´t have to be always the same on all sides of the image.

The padding dimensions can be asymmetric or even have a custom
padding design.
• There is a common misconception among beginners that Conv. layers

are Convolutional Neural Networks.
Well, convolutional layers are an essential component, but as its name
indicates, they are a LAYER inside CNNs.
We have comprehended the most important part of CNNs, but there are
still two other special types of layers that we have to understand:
• Pooling Layers
• Flattening Layers

Pooling Layers

Before explaining how these layers work it´s crucial to have this
clear:
• Although Convolutional Layers can decrease the output size, their

principal objective is not DIMENSIONALITY REDUCTION.
The main objective of Convolutional Layers is FEATURE

EXTRACTION.
In fact, in most cases we are not reducing the dimensions of our
data because we are creating new channels that weren´t there
before, so even if our feature map dimensions are smaller, we have
more of them.

Take a look at this example, here we might be reducing a bit our
feature map in each Convolutional Layer but we are creating much
more channels.

• What about the subsampling layers?

Those are pooling layers and its main objective is indeed dimensionality
reduction!

• How Pooling Layers Work

Imagine you have a large image and want to make it smaller but keep all
the important features like edges and colors.

The pooling layer operates independently on every depth slice of the
input. It resizes it spatially, using the Max or Average of the values in a
window slid over the input data.

In this example, we have
reduced the feature map
from (4 × 4) to (2 × 2).

What is the difference between pooling and the convolution
operation?
In pooling, we are not applying any kernel to the input data, we are
just simplifying the information with a math operation (Max or
Avg).

What about the channels, pooling also reduces the number of
channels?
• Pooling layers DO NOT REDUCE THE NUMBER OF CHANNELS.
• Each pooling operation IS APPLIED INDEPENDENTLY TO EACH

CHANNEL of the input data.

This is a good representation, here you can see how each pooling layer
is reducing the dimensions of the spatial space but it's not reducing
the number of channels.

• The number of channels is not reduced until the end of the
architecture.

With Convolutional and Pooling layers we CAN´T reduce the
number of channels, just add more to the existing ones.

So why and how do we combine all these channels?
After convolutional and pooling layers have extracted relevant
features from the input image we have to turn this high-
dimensional feature map into a format suitable for feeding into fully
connected layers.
Here´s where flattening layers come into action!

Flattening layers
Imagine you have a grid of data (like pixels in a feature map), and
you want to line up all of these grid points in a single, long line.
That’s what flattening does. It takes the entire feature map and
reorganizes it into a single, long vector.

Although flattening changes the shape of the data, it does not
make any changes to the actual information.
Why do we need flattening layers?
Integration of features
By flattening the feature maps into a vector, the network can
integrate the spatially distributed features extracted for tasks such
as classification.
Compatibility with Dense Layers
Fully connected layers (dense layers) are designed to operate on 1-
dimensional data, hence, flattening is a necessary step to
transition from the multidimensional tensors produced by
convolutional layers to the format required for dense layers.

Why do we need Dense Layers in CNNs?
While convolutional layers are good at detecting features in input
data, dense layers are essential for integrating these features into
predictions.
For example, if we design a convolutional neural network for facial
recognition, early layers might detect edges and textures, while
dense layers might interpret these to recognize specific facial
features.
Without dense layers, CNNs would not be able to perform the high-
level tasks that are often required, such as classifying
images, detecting objects, or making predictions based on visual
inputs.

CNN recap

Up to this point, we have revised the whole CNN structure:
• Convolutional Layers
• Pooling layers
• Flattening layers
• Dense layers
With the fundamental concepts of channels, stride, and pooling.

Activation functions in Convolutional Neural
Networks
As you may know activation functions are indispensable, otherwise,
we would be creating a very large linear model.
As in simple neural networks, we also need these non-linear
terms in ConvNets. However, not all the layers we have seen
have an activation function

The first two pooling layers are not shown in this diagram, this is
another way of visualizing CNNs, it doesn´t mean that they are not
there, just imagine a filter between each layer that makes them
smaller.

In the feature extraction part, the activations will be in
the convolutional layers. The process is quite straightforward, after
each convolution operation you multiply the result by an activation
function.

The pooling and flattening layers DON´T have an activation
function.

The main function of pooling layers is dimensionality reduction and
the main purpose of flattening layers is restructuring the data into a
1D vector.

We don´t need to include non-linearities for doing that.
Nevertheless, we do need activation functions for
extracting complex features (we won´t be able to capture relevant
characteristics of an image with only a linear function).
In the classification part, all the fully connected layers and the
output layer will have an activation function, as in simple neural
nets.

Here we also need an activation function because we are using the
features extracted to make a classification or a prediction, and the
algorithm has to learn complex interactions (as a simple neural
network would do).

Activations — Convolutional and dense
layers

• ReLU: is the most common activation function. It outputs the
input directly if it is positive, otherwise, it outputs zero. It has the
benefit of reducing training time and mitigating the vanishing
gradient problem.

• Leaky ReLU: A variation of ReLU that allows a small, non-zero
gradient when the unit is inactive, which can help prevent dead
neurons during training.

Activations — Output layer

• Sigmoid: Produces an output in the range (0, 1). It’s not
commonly used in hidden layers anymore due to the vanishing
gradient problem, but it’s still used for binary classification in the
output layer.

• Tanh (Hyperbolic Tangent): Output values in the range (-1, 1). It is
similar to the sigmoid but can provide better training performance
for some problems due to its output range.

Thank you for attention!

	Слайд 1, DL in Applied Mathematics Lecture 8: Convolutional Neural Networks
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5, How do CNNs work?
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9, Convolutional layers
	Слайд 10, Kernels
	Слайд 11
	Слайд 12, Convolution Operation
	Слайд 13
	Слайд 14
	Слайд 15
	Слайд 16
	Слайд 17, Depth of the layer
	Слайд 18
	Слайд 19
	Слайд 20, 2.- Stride
	Слайд 21
	Слайд 22
	Слайд 23
	Слайд 24, 3.- Padding
	Слайд 25
	Слайд 26
	Слайд 27
	Слайд 28
	Слайд 29
	Слайд 30, Pooling Layers
	Слайд 31
	Слайд 32
	Слайд 33
	Слайд 34
	Слайд 35
	Слайд 36
	Слайд 37, Flattening layers
	Слайд 38
	Слайд 39
	Слайд 40, CNN recap
	Слайд 41, Activation functions in Convolutional Neural Networks
	Слайд 42
	Слайд 43
	Слайд 44
	Слайд 45
	Слайд 46, Activations — Convolutional and dense layers
	Слайд 47, Activations — Output layer
	Слайд 48

