
RIMBERIO CO ContactAbout UsServiceHome

Lecture 9: CONVOLUTIONAL NEURAL

NETWORK (CNN) & COMPUTER VISION
W W W . R E A L L Y G R E A T S I T E . C O M

DL in Applied Mathematics

RIMBERIO CO ContactAbout UsServiceHome

www.reallygreatsite.com

CNNS, A CLASS OF DEEP LEARNING ALGORITHMS, HAVE

REVOLUTIONIZED HOW MACHINES PERCEIVE AND

INTERPRET VISUAL INFORMATION, ENABLING

ADVANCEMENTS IN VARIOUS APPLICATIONS FROM

AUTONOMOUS VEHICLES TO MEDICAL IMAGE ANALYSIS.

THIS ARTICLE DELVES INTO THE INTRICACIES OF CNN

ARCHITECTURES, THEIR OPERATIONAL MECHANISMS, AND

HOW THEY EXTRACT AND LEARN FEATURES FROM VISUAL

INPUTS. BY COMPREHENDING THESE ASPECTS, WE CAN

APPRECIATE THE COMPLEXITIES AND THE POTENTIAL OF

CNNS IN TRANSFORMING OUR INTERACTION WITH THE

DIGITAL WORLD.

CNN

Portfolio

RIMBERIO CO ContactAbout UsServiceHome

www.reallygreatsite.com

AT FIRST, A ZIP FILE CONTAINING PIZZA

AND STEAK IMAGES IS FIRST

DOWNLOADED USING THE WGET

COMMAND FROM A GOOGLE CLOUD

STORAGE URL. THIS FILE IS INTENDED

FOR USE IN A FOOD VISION PROJECT.

FOLLOWING THE DOWNLOAD, THE

PYTHON ZIPFILE MODULE IS UTILIZED TO

OPEN THE PIZZA_STEAK.ZIP FILE IN

READ MODE, EXTRACT ITS CONTENTS TO

THE CURRENT WORKING DIRECTORY,

AND THEN CLOSE THE FILE TO

EFFICIENTLY MANAGE SYSTEM

RESOURCES.

RIMBERIO CO ContactAbout UsServiceHome

www.reallygreatsite.com

THE OS MODULE IS USED TO NAVIGATE THROUGH

THE CONTENTS OF THE "PIZZA_STEAK"

DIRECTORY. THE OS.WALK("PIZZA_STEAK")

FUNCTION IS EMPLOYED TO TRAVERSE THE

DIRECTORY STRUCTURE, RETURNING A TUPLE

CONTAINING THE DIRECTORY PATH, DIRECTORY

NAMES, AND FILENAMES FOR EACH ITERATION.

FOR EACH DIRECTORY IN THE "PIZZA_STEAK"

STRUCTURE, A FORMATTED PRINT STATEMENT

REPORTS THE NUMBER OF SUBDIRECTORIES

(DIRNAMES) AND IMAGES (FILENAMES)

PRESENT, PROVIDING A CLEAR OVERVIEW OF THE

DIRECTORY'S STRUCTURE AND CONTENTS.

RIMBERIO CO ContactAbout UsServiceHome

www.reallygreatsite.com

THE FUNCTION TAKES TWO PARAMETERS:

TARGET_DIR, THE MAIN DIRECTORY, AND

TARGET_CLASS, THE SUBCATEGORY WITHIN

THAT DIRECTORY. INITIALLY, THE FUNCTION

CONSTRUCTS THE PATH TO THE TARGET FOLDER

BY COMBINING THESE PARAMETERS. THEN, IT

SELECTS A RANDOM IMAGE FROM THIS FOLDER

USING THE OS.LISTDIR AND RANDOM.SAMPLE

METHODS. THE SELECTED IMAGE IS READ AND

DISPLAYED USING THE MATPLOTLIB LIBRARY,

WITH THE TITLE SET TO THE TARGET CLASS AND

THE AXIS TURNED OFF FOR A CLEANER VIEW.

ADDITIONALLY, THE SHAPE OF THE IMAGE IS

PRINTED, PROVIDING DETAILS ABOUT ITS

DIMENSIONS.

array([[[92, 33, 27],

 [98, 39, 33],

 [98, 39, 33],

 ...,

 [27, 19, 17],

 [28, 19, 20],

 [27, 18, 19]],

 [[98, 39, 33],

 [100, 41, 35],

 [99, 40, 34],

 ...,

 [31, 23, 21],

 [30, 20, 21],

 [27, 18, 19]],

 [[102, 45, 38],

 [102, 45, 38],

 [101, 44, 37],

 ...,

 [33, 23, 21],

 [32, 20, 20],

 [28, 18, 17]],

 ...,

 [[232, 208, 174],

 [228, 204, 170],

 [225, 202, 170],

 ...,

 [109, 91, 67],

 [111, 93, 71],

 [111, 93, 71]],

 [[232, 208, 172],

 [230, 206, 170],

 [227, 204, 170],

 ...,

 [114, 96, 72],

 [120, 102, 80],

 [122, 104, 82]],

 [[232, 208, 172],

 [230, 206, 170],

 [228, 205, 171],

 ...,

 [118, 100, 76],

 [127, 109, 87],

 [131, 113, 91]]], dtype=uint8)

As we know, many machine learning models,

including neural networks prefer the values

they work with to be between 0 and 1. Knowing

this, one of the most common preprocessing

steps for working with images is to scale (also

referred to as normalize) their pixel values by

dividing the image arrays by 255

Get all the pixel values between 0 & 1

img/255.

Output:

array([[[0.36078431, 0.12941176,

0.10588235],

 [0.38431373, 0.15294118, 0.12941176],

 [0.38431373, 0.15294118, 0.12941176],

 ...,

 [0.10588235, 0.0745098 , 0.06666667],

 [0.10980392, 0.0745098 , 0.07843137],

 [0.10588235, 0.07058824, 0.0745098]],

 [[0.38431373, 0.15294118, 0.12941176],

 [0.39215686, 0.16078431, 0.1372549],

 [0.38823529, 0.15686275, 0.13333333],

 ...,

 [0.12156863, 0.09019608, 0.08235294],

 [0.11764706, 0.07843137, 0.08235294],

 [0.10588235, 0.07058824, 0.0745098]],

 [[0.4 , 0.17647059, 0.14901961],

 [0.4 , 0.17647059, 0.14901961],

 [0.39607843, 0.17254902, 0.14509804],

 ...,

 [0.12941176, 0.09019608, 0.08235294],

 [0.1254902 , 0.07843137, 0.07843137],

 [0.10980392, 0.07058824, 0.06666667]],

[[0.90980392, 0.81568627, 0.68235294],

 [0.89411765, 0.8 , 0.66666667],

 [0.88235294, 0.79215686, 0.66666667],

 ...,

 [0.42745098, 0.35686275, 0.2627451],

 [0.43529412, 0.36470588, 0.27843137],

 [0.43529412, 0.36470588, 0.27843137]],

 [[0.90980392, 0.81568627, 0.6745098],

 [0.90196078, 0.80784314, 0.66666667],

 [0.89019608, 0.8 , 0.66666667],

 ...,

 [0.44705882, 0.37647059, 0.28235294],

 [0.47058824, 0.4 , 0.31372549],

 [0.47843137, 0.40784314, 0.32156863]],

 [[0.90980392, 0.81568627, 0.6745098],

 [0.90196078, 0.80784314, 0.66666667],

 [0.89411765, 0.80392157, 0.67058824],

 ...,

 [0.4627451 , 0.39215686, 0.29803922],

 [0.49803922, 0.42745098, 0.34117647],

 [0.51372549, 0.44313725, 0.35686275]]])

A convolutional neural network (CNN) is set up and trained

using TensorFlow and the Keras API to classify images into two

categories: pizza and steak. Initially, the random seed is set for

reproducibility. ImageDataGenerators are created for training

and validation datasets to preprocess the images by scaling

their pixel values between 0 and 1 (normalization). The

generators load images from specified directories (train_dir and

test_dir), converting them into batches of 32 images of size

224x224 pixels, and setting the class mode to 'binary' for binary

classification.

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

Set the seed

tf.random.set_seed(42)

Preprocess data (get all of the pixel values between 1 and 0, also called scaling/normalization)

train_datagen = ImageDataGenerator(rescale=1./255)

valid_datagen = ImageDataGenerator(rescale=1./255)

Setup the train and test directories

train_dir = "pizza_steak/train/"

test_dir = "pizza_steak/test/"

Import data from directories and turn it into batches

train_data = train_datagen.flow_from_directory(train_dir,

 batch_size=32, # number of images to process at a time

 target_size=(224, 224), # convert all images to be 224 x 224

 class_mode="binary", # type of problem we're working on

 seed=42)

valid_data = valid_datagen.flow_from_directory(test_dir,

 batch_size=32,

 target_size=(224, 224),

 class_mode="binary",

 seed=42)

Create a CNN model (same as Tiny VGG - https://poloclub.github.io/cnn-explainer/)

model_1 = tf.keras.models.Sequential([

 tf.keras.layers.Conv2D(filters=10,

 kernel_size=3, # can also be (3, 3)

 activation="relu",

 input_shape=(224, 224, 3)), # first layer specifies input shape (height, width, colour channels)

 tf.keras.layers.Conv2D(10, 3, activation="relu"),

 tf.keras.layers.MaxPool2D(pool_size=2, # pool_size can also be (2, 2)

 padding="valid"), # padding can also be 'same'

 tf.keras.layers.Conv2D(10, 3, activation="relu"),

 tf.keras.layers.Conv2D(10, 3, activation="relu"), # activation='relu' == tf.keras.layers.Activations(tf.nn.relu)

 tf.keras.layers.MaxPool2D(2),

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(1, activation="sigmoid") # binary activation output

])

Compile the model

model_1.compile(loss="binary_crossentropy",

 optimizer=tf.keras.optimizers.Adam(),

 metrics=["accuracy"])

Fit the model

history_1 = model_1.fit(train_data,

 epochs=5,

 steps_per_epoch=len(train_data),

 validation_data=valid_data,

 validation_steps=len(valid_data))

Output:

Found 1500 images belonging to 2 classes.

Found 500 images belonging to 2 classes.

Epoch 1/5

47/47 [==============================] - 18s 134ms/step - loss: 0.6059 - accuracy: 0.6800 - val_loss: 0.4634 - val_accuracy: 0.8040

Epoch 2/5

47/47 [==============================] - 7s 158ms/step - loss: 0.4751 - accuracy: 0.7793 - val_loss: 0.4584 - val_accuracy: 0.7880

Epoch 3/5

47/47 [==============================] - 6s 122ms/step - loss: 0.4439 - accuracy: 0.8013 - val_loss: 0.3878 - val_accuracy: 0.8340

Epoch 4/5

47/47 [==============================] - 7s 149ms/step - loss: 0.4140 - accuracy: 0.8260 - val_loss: 0.3776 - val_accuracy: 0.8300

Epoch 5/5

47/47 [==============================] - 6s 118ms/step - loss: 0.3715 - accuracy: 0.8520 - val_loss: 0.3449 - val_accuracy: 0.8540

Check out the layers in our model

model_1.summary()

It initializes and trains a simpler TensorFlow neural network

model for binary image classification. The model, structured

with dense layers and ‘relu’ activations, is compiled with

binary cross-entropy loss and Adam optimizer, and then

trained on the same pizza and steak image dataset for 5

epochs.

1.Import and become one with data

RIMBERIO CO ContactAbout UsServiceHome

www.reallygreatsite.com

2. PREPROCESS THE
DATA (PREPARING
IT FOR A MODEL)# Define training and test directory paths

train_dir = "pizza_steak/train/"

test_dir = "pizza_steak/test/"

Create train and test data generators and rescale the data

from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale=1/255.)

test_datagen = ImageDataGenerator(rescale=1/255.)

Turn it into batches

train_data = train_datagen.flow_from_directory(directory=train_dir,

 target_size=(224, 224),

 class_mode='binary',

 batch_size=32)

test_data = test_datagen.flow_from_directory(directory=test_dir,

 target_size=(224, 224),

 class_mode='binary',

 batch_size=32)

Output:

Found 1500 images belonging to 2 classes.

Found 500 images belonging to 2 classes.

RIMBERIO CO ContactAbout UsServiceHome

www.reallygreatsite.com

3. Creating a model (starting

with a baseline)

Shuffling Augmented Training Data: Shuffling the augmented training data can have a

significant impact on the training process and the behavior of the loss curve.

Import data and augment it from directories

train_data_augmented_shuffled = train_datagen_augmented.flow_from_directory(train_dir,

 target_size=(224, 224),

 batch_size=32,

 class_mode='binary',

 shuffle=True) # Shuffle data (default)

Output:

Found 1500 images belonging to 2 classes.

Create the model (same as model_5 and model_6)

model_7 = Sequential([

 Conv2D(10, 3, activation='relu', input_shape=(224, 224, 3)),

 MaxPool2D(),

 Conv2D(10, 3, activation='relu'),

 MaxPool2D(),

 Conv2D(10, 3, activation='relu'),

 MaxPool2D(),

 Flatten(),

 Dense(1, activation='sigmoid')

])

Compile the model

model_7.compile(loss='binary_crossentropy',

 optimizer=Adam(),

 metrics=['accuracy'])

Fit the model

history_7 = model_7.fit(train_data_augmented_shuffled, # now the augmented data is shuffled

 epochs=5,

 steps_per_epoch=len(train_data_augmented_shuffled),

 validation_data=test_data,

 validation_steps=len(test_data))

Epoch 1/5

47/47 [==============================] - 23s 458ms/step - loss: 0.6510 - accuracy: 0.6227 - val_loss: 0.4911 - val_accuracy: 0.7980

Epoch 2/5

47/47 [==============================] - 23s 492ms/step - loss: 0.5498 - accuracy: 0.7440 - val_loss: 0.4312 - val_accuracy: 0.8260

Epoch 3/5

47/47 [==============================] - 22s 461ms/step - loss: 0.5358 - accuracy: 0.7467 - val_loss: 0.4361 - val_accuracy: 0.8260

Epoch 4/5

47/47 [==============================] - 23s 499ms/step - loss: 0.5071 - accuracy: 0.7673 - val_loss: 0.3832 - val_accuracy: 0.8480

Epoch 5/5

47/47 [==============================] - 27s 574ms/step - loss: 0.5062 - accuracy: 0.7580 - val_loss: 0.4974 - val_accuracy: 0.7480

Check model's performance history training on augmented data

plot_loss_curves(history_7)

Making a prediction with our trained model

To test it out, we’ll upload a couple of our own images and see how the model goes.

Since our model takes in images of shapes (224, 224, 3), we’ve got to reshape our

custom image to use it with our model.

To do so, we can import and decode our image using tf.io.read_file (for readining

files) and tf.image (for resizing our image and turning it into a tensor).

ContactAbout UsPhotoHome

1.Import and become one
with the data

2.Preprocess the data
(prepare it for a model)

3.Create a model (start with
a baseline)

MULTICLASS CLASSIFICATION

04 05
ContactAbout UsPhotoHome

01

EVALUATE THE MODEL

Even with a simplifed model, it looks like our model is still

dramatically overfitting the training data.Data augmentation?

Data augmentation makes it harder for the model to learn on

the training data and in turn, hopefully making the patterns it

learns more generalizable to unseen data.

ContactAbout UsPhotoHome

To conclude, our journey through the realms of CNNs and computer
vision reveals a dynamic interplay of technology and practicality, where
theoretical concepts transform into real-world applications. We have seen
how CNNs, through their unique architecture and learning capabilities,
adeptly handle complex visual data, paving the way for breakthroughs in
various sectors.

The versatility and efficiency of CNNs in image recognition, object detection,
and beyond signify a significant leap in how machines understand and interact
with their visual environment. However, challenges such as overfitting and the
need for extensive data highlight areas for future improvement and research.
As we continue to advance in the field of AI and machine learning, CNNs stand
as a testament to the profound impact of these technologies in shaping our
visual and digital experiences.

RIMBERIO CO ContactAbout UsServiceHome

www.reallygreatsite.com

THANK YOU

	Слайд 1
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15
	Слайд 16
	Слайд 17
	Слайд 18
	Слайд 19
	Слайд 20
	Слайд 21

