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Course Contents

Characterizing inverse problems

Linear, discrete inverse problems

Linearizing nonlinear problems

Discrete ill-posed inverse problems

Regularization

Fully nonlinear inversion and parameter search

Probabilistic inference
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Books

See also Menke ‘Geophysical data
analysis: discrete inverse theory’
(Academic Press, 1989)
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Books

Chapter 7 on inverse problems

Introductory Chapter on
inverse problems

Useful Bayesian tutorial

(First 5 chapters)
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Reference works

Some papers:

Understanding inverse theory

Ann. Rev. Earth Planet. Sci., 5, 35-64, Parker (1977).

Interpretation of inaccurate, insufficient and inconsistent data

Geophys. J. Roy. astr. Soc., 28, 97-109, Jackson (1972).

Monte Carlo sampling of solutions to inverse problems

J. Geophys. Res., 100, 12,431–12,447,

Mosegaard and Tarantola, (1995)

Monte Carlo methods in geophysical inverse problems,

Rev. of Geophys., 40, 3.1-3.29,

Sambridge and Mosegaard (2002)

There are also several manuscripts on inverse problems available
on the Internet. I can not vouch for any of them.

See http://www.ees.nmt.edu/Geop/Classes/GEOP529_book.html
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Lecture 1: Introduction

What are inverse problems and why do we care...



Geophysical inverse problems

Inferring seismic properties of the Earth’s interior

from surface observations
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Inverse problems are everywhere

When data only indirectly constrain quantities of interest
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Thinking backwards

Most people, if you describe a train of events to them will
tell you what the result will be. There are few people,
however that if you told them a result, would be able to
evolve from their own inner consciousness what the steps
were that led to that result. This power is what I mean
when I talk of reasoning backward.

Sherlock Holmes,

A Study in Scarlet,
Sir Arthur Conan Doyle (1887)
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Reversing a forward problem
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Inverse problems=quest for information

What is that ?

What can we tell about

Who/whatever made it ?

Collect data:

Measure size, depth

properties of the ground

Can we expect to reconstruct the

whatever made it from the evidence ?

Use our prior knowledge:

Who lives around here ?

Make guesses ?
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Anatomy of an inverse problem

Hunting for gold at the beach with a gravimeter

X
X

X
X

?Gravimeter

Courtesy Heiner Igel
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Forward modelling example: Treasure Hunt

We have observed some values:

10, 23, 35, 45, 56 μ gals X X
X

XX

How can we relate the observed gravity

values to the subsurface properties? Gravimeter
?

We know how to do the forward problem:

Gρ(r ' )
∫Φ(r) = dV '

r − r'

This equation relates the (observed) gravitational potential to the

subsurface density.

-> given a density model we can predict the gravity field at the surface!
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Treasure Hunt: Trial and error

What else do we know?

Density sand: 2.2 g/cm3

Density gold: 19.3 g/cm3

X X
X

XX

Do we know these values exactly?

Gravimeter

Where is the box with gold? ?

One approach is trial and (t)error forward modelling

Use the forward solution to calculate many models for a rectangular box

situated somewhere in the ground and compare the theoretical (synthetic)
data to the observations.
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Treasure Hunt: model space

But ...

... we have to define plausible models

for the beach. We have to somehow
describe the model geometrically.

X X
X

XX

Gravimeter
?

We introduce simplifying approximations

- divide the subsurface into rectangles with variable density

- Let us assume a flat surface

x x x x xsurface

sand

gold
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Treasure Hunt: Non-uniqueness

Could we compute all possible models

and compare the synthetic data with the
observations?

X X
X

XX
- at every rectangle two possibilities

(sand or gold)
- 250 ~ 1015 possible models

Gravimeter

(Age of universe ~1017 s)

Too many models!

- We have 1015 possible models but only 5 observations!

- It is likely that two or more models will fit the data (maybe exactly)

Non-uniqueness is likely
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Treasure hunt: a priori information

Is there anything we know about the

treasure?

X X

How large is the box?
X

XX

Is it still intact?

Has it possibly disintegrated?

What was the shape of the box?

Gravimeter

This is called a priori (or prior) information.

It will allow us to define plausible, possible, and unlikely models:

plausible possible unlikely
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Treasure hunt: data uncertainties

Things to consider in formulating the inverse problem

Do we have errors in the data ?

Did the instruments work correctly ?

Do we have to correct for anything?

(e.g. topography, tides, ...)

X X
X

XX

Gravimeter

Are we using the right theory ?

Is a 2-D approximation adequate ?

Are there other materials present other than gold and sand ?

Are there adjacent masses which could influence observations ?

Answering these questions often requires introducing more

simplifying assumptions and guesses.

All inferences are dependent on these assumptions. (GIGO)

18



Treasure Hunt: solutions

Models with less than 2% error.
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Treasure Hunt: solutions

Models with less than 1% error.
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What we have learned from one example

Inverse problems = inference about physical
systems from data X XX

XX

Gravimeter

- Data usually contain errors (data uncertainties)

- Physical theories require approximations
- Infinitely many models will fit the data (non-uniqueness)
- Our physical theory may be inaccurate (theoretical uncertainties)
- Our forward problem may be highly nonlinear

- We always have a finite amount of data

Detailed questions are:

How accurate are our data?

How well can we solve the forward problem?

What independent information do we have on the model space

(a priori information) ?
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Estimation and Appraisal
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Let’s be a bit more formal…



What is a model ?

A simplified way of representing physical reality:

A seismic model of the Lithosphere might consist of a set of

layers with P-wavespeed of rocks as a constant in each layer.
This is an approximation. The real Earth is more complex.

A model of density structure that explains a local gravity

anomaly might consist of a spherical body of density ρ + Δρ and

radius R, embedded in a uniform half-space.

A model may consist of:

A finite set of unknowns representing parameters to be solved for,

e.g. the intercept and gradient in linear regression.

A continuous function,

e.g. the seismic velocity as a function of depth.
24



Discretizing a continuous model

Often continuous functions are discretized to produce a finite set of

unknowns. This requires use of Basis functions

become the unknowns

are the chosen basis functions

All inferences we can make about the continuous function

will be influenced by the choice of basis functions. They

must suit the physics of the forward problem. They bound

the resolution of any model one gets out. 25



Discretizing a continuous model

Example of Basis functions

Local support

Global support
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Forward and inverse problems

Given a model m the forward problem is to predict the data that

it would produce d

Given data d the inverse problem is to find the model m that

produced it.

Terminology can be a problem. Applied mathematicians often

call the equation above a mathematical model and m as its

parameters, while other scientists call G the forward operator
and m the model.

Consider the example of linear regression...
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Linear Regression

What is the forward problem ?

What is the inverse problem ?
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Characterizing inverse Problems

They come in all shapes and sizes…



Types of inverse problem

Can you think

of examples in
each category ?

Nonlinear and discrete

m and d are vectors of finite length and G is a function

Linear and discrete

m is a vector of M unknowns

d is a vector of N data

and G is an M x N matrix.

Linearized

Perturbations in model parameters from a reference model

related linearly to differences between observations and

predictions from the reference model.
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Types of inverse problem

Linear and continuous

is called an operator and is a kernel.

Fredholm integral equation of the first kind
(these are typically ill-posed)

Can you think

of examples in
each category ?Non-Linear and continuous

is a nonlinear function of the unknown

function
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Linear functions

A linear function or operator obey the following rules

Superposition

Scaling

Are the following linear or nonlinear inverse problems

1. We want to predict rock density ρ in the Earth at a given radius r from its center

from the known mass M and moment of inertia I of the Earth. We use the
following relation:

Z

a
di = gi(r)ρ(r)dr

0
where d = M and d = I and g (r) are the corresponding Frechet kernels: g (r) =1 2 i 1

4 pi r2 and g (r) = 8/3 π r4.2

2. We want to determine v(r) of the medium from measuring ttravel time, t for
many wave paths.

Z

1
ti = ds

V (r)Ri

32



Formulating inverse problems

Regression

Discrete or continuous ?

Linear or nonlinear ? Why ?

What are the data ?

What are the model parameters ?

Unique or non-unique solution ?

y = a + bx
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Formulating inverse problems

Ballistic trajectory

Discrete or continuous ?

Linear or nonlinear ? Why ?

What are the data ?

What are the model parameters ?

Unique or non-unique solution ?
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Recap: Characterising inverse problems

Inverse problems can be continuous or discrete

Continuous problems are often discretized by choosing a

set of basis functions and projecting the continuous

function on them.

The forward problem is to take a model and predict

observables that are compared to actual data. Contains

the Physics of the problem. This often involves a

mathematical model which is an approximation to the real

physics.

The inverse problem is to take the data and constrain the

model in some way.

We may want to build a model or we may wish to ask a

less precise question of the data !
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Three classical questions
(from Backus and Gilbert, 1968)

The problem with constructing a solution

The existence problem

Does any model fit the data ?

The uniqueness problem

Is there a unique model that fits the data ?

The stability problem

Can small changes in the data produce large

changes in the solution ?

(Ill-posedness)

Backus and Gilbert (1970)

Uniqueness in the inversion of inaccurate gross earth data.

Phil. Trans. Royal Soc. A, 266, 123-192, 1970.
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