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What is PINN?

Physics-informed neural networks (PINNs) are a 
type of universal function approximators that can 
embed the knowledge of any physical laws that 
govern a given data-set in the learning process, 
and can be described by partial differential 
equations (PDEs). They overcome the low data 
availability of some biological and engineering 
systems that makes most state-of-the-art machine 
learning techniques lack robustness, rendering 
them ineffective in these scenarios.



PINNs - Neural networks that are trained to 
solve supervised learning tasks while respecting 
physical laws (PDEs) 

• Data-driven solution 

• Data-driven discovery of PDEs 

Two distinct types of algorithms 

• New family of data-efficient spatio-temporal 
function approximators 

• Arbitrary accurate RK time steppers with 
potentially unlimited number of stages 



History

Physics-informed machine learning debuted in the 1990s, 
appearing in scattered papers throughout the decade. A 
resurgence in machine learning around 2010 breathed new life into 
this promising offshoot.

Another milestone came in 2014 with Facebook’s DeepFace. Its 
algorithm was able to detect whether two faces in unfamiliar photos 
are of the same person with 97.25% accuracy, despite differing 
lighting conditions or angles. Humans generally have an average 
of 97.53% accuracy, meaning Facebook's facial-processing 
software had nearly the same accuracy as a human being.



The Physics-Informed Neural Networks (PINN) approach was first 
introduced by Raissi et al. in their 2019 paper "Physics-Informed Neural 
Networks: A Deep Learning Framework for Solving Forward and Inverse 
Problems Involving Nonlinear Partial Differential Equations". The paper 
was published in the Journal of Computational Physics and presented a 
novel framework for solving partial differential equations (PDEs) using 
neural networks.

Raissi et al. proposed a method for incorporating known physical laws, 
represented by the PDE, into the neural network architecture. This 
allowed the network to learn both from the data and from the underlying 
physics of the system being modeled, leading to more accurate and 
physically meaningful predictions.

Since its introduction, the PINN approach has gained widespread 
attention in the scientific community and has been applied to a wide 
range of problems in various fields such as fluid mechanics, heat 
transfer, and materials science, among others.



Strengths and limitations of physics-informed machine 

learning

One of the greatest strengths in physics-informed machine learning 
is that it yields results quickly—in just a fraction of a second. 
Because of the flow structure of the neural network, the output of a 
new sample is very efficient. And when the training is successful, 
the predictions are impressively accurate.

A neural network can be successfully trained to recognize a 
collection of drugs and make accurate predictions about its 
effectiveness. But this same system will be far less effective when 
it comes to predictions about drug compounds, because it cannot 
successfully predict anything about drugs with which it is 
unfamiliar.



There are several advantages of using Physics-Informed Neural 

Networks (PINN) compared to traditional methods of solving 

physical problems

* Incorporation of physics-based constraints: PINN allows for the incorporation of physical principles 

or equations as constraints during the neural network training process. This helps to ensure that 

the predictions made by the neural network are physically meaningful and accurate.

* Ability to handle noisy and incomplete data: Traditional methods of solving physical problems often 

struggle with noisy or incomplete data. PINN can handle such data by learning the underlying 

physical relationships and using them to make accurate predictions.

* Faster computation: PINN can often solve physical problems much faster than traditional methods. 

This is because the neural network can be trained on large datasets and can make predictions 

quickly once it has been trained.

* Versatility: PINN can be applied to a wide range of physical problems, from fluid dynamics to 

materials science to quantum mechanics. This makes it a versatile tool for researchers working in 

various fields of physics.

* Reduced need for manual intervention: Traditional methods of solving physical problems often 

require manual intervention, such as setting up boundary conditions or adjusting parameters. 

PINN can automate many of these tasks, reducing the need for human intervention and speeding 

up the modeling process.



Some disadvantages of PINN

* Limited interpretability: The complexity of neural networks can make it difficult to understand how 

the model arrived at its predictions. This can be a disadvantage in applications where 

interpretability is important, such as in scientific research where physical principles need to be 

understood and validated.

* Data requirements: PINN requires a large amount of data to be effective, especially in cases 

where the physical problem is highly complex. Obtaining this data can be time-consuming and 

expensive, and may not always be feasible.

* Computationally intensive: PINN can be computationally intensive, especially when dealing with 

large datasets or complex physical problems. This can lead to longer training times, higher energy 

consumption, and the need for more powerful computing resources.

* Sensitivity to hyperparameters: The performance of PINN is highly dependent on the choice of 

hyperparameters, such as the number of layers, the number of neurons in each layer, and the 

learning rate. Selecting the right hyperparameters can be challenging and time-consuming.

* Difficulty in implementation: Implementing PINN requires expertise in both neural networks and 

physics, which can be a barrier for researchers who are not familiar with both fields. Additionally, 

PINN may require custom code or modifications to existing neural network frameworks, which can 

add to the complexity of implementation.



The formula for PINN
* The neural network architecture: This 

includes the number of layers, the 

number of neurons in each layer, the 

activation function used in each 

neuron, and any other parameters 

related to the neural network structure.



Loss function

In Physics-Informed Neural Networks (PINN), the mean squared error (MSE) is 

a commonly used loss function for the data-driven component of the loss 

function. The MSE measures the average squared difference between the 

predicted output of the neural network and the actual output, and is given by the 

formula:

MSE = 1/N * Σi=1 to N (yi - ŷi)²

where N is the number of training samples, yi is the actual output for sample i, 

and ŷi is the predicted output for sample i.

In PINN, the MSE is typically combined with a physics-driven loss function that 

incorporates physical principles or equations. This allows the neural network to 

learn not only from the data, but also from the underlying physical laws 

governing the system being modeled.



Optimizer

* The optimizer: The optimizer is used to 

adjust the weights and biases of the 

neural network during training in order 

to minimize the loss function. Popular 

optimizers include stochastic gradient 

descent (SGD), Adam, and RMSprop.



The physics-informed part

* The physics-informed part: This is the part 

of the formula that incorporates physical 

principles or equations into the neural 

network training process. This can involve 

adding constraints or boundary conditions 

to the loss function, or incorporating 

physical laws as part of the neural network 

structure.



The general aim

⚫ The general aim of this class(subject) is to set the foundations for a new 
paradigm in modeling and computation that enriches deep learning with the 
longstanding developments in mathematical physics. These developments 
are presented in the context of two main problem classes: data-driven 
solution and data-driven discovery of partial differential equations. To this 
end, let us consider parametrized and nonlinear partial differential equations 
of the general form

⚫ ut + N [u; λ] = 0,

⚫ where u(t, x) denotes the latent (hidden) solution and N [·; λ] is a nonlinear 
operator parametrized by λ. This setup encapsulates a wide range of 
problems in mathematical physics including conservation laws, diffusion 
processes, advection-diffusion-reaction systems, and kinetic equations.



Example

⚫ Let’s take as a example the one dimensional Burgers’ equation



As an example, let us consider the Burgers’ equation. 
In one space dimension, the Burger’s equation along 
with Dirichlet boundary conditions reads as

− ∈ − ∈
−

−
Let us define to be given by

−
and proceed by approximating u(t,x) by a deep 

neural network. To highlight the simplicity in 
implementing this idea let us include a Python code 
snippet using Tensorflow. To this end, can be 

simply defined as

https://en.wikipedia.org/wiki/Burgers%27_equation
https://en.wikipedia.org/wiki/Dirichlet_boundary_condition
https://www.tensorflow.org/








Example (Shrödinger Equation)







Discrete Time Models















Example (Korteweg–de Vries Equation)





CONCLUSION

Introduced physics-informed neural networks, a new class of universal function 
approximators that are capable of encoding any underlying physical laws that govern a 
given data-set (described by PDEs) Design data-driven algorithms for inferring solutions 
to general nonlinear PDEs, and constructing computationally efficient physics-informed 
surrogate models.
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