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Suppose a sample of n sets of paired observations (x,y,)(i=1,2,...,n) are available. These observations are assumed to

satisfy the simple linear regression model and so we can write
y,=B+ Bx +e(i=1,2,..,n).

The method of least squares estimates the parameters £, and £, by minimizing the sum of squares of difference between
the observations and the line in the scatter diagram. Such an idea is viewed from different perspectives. When the vertical
difference between the observations and the line in the scatter diagram is considered and its sum of squares is minimized

to obtain the estimates of 3, and /3, , the method is known as direct regression.
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Alternatively, the sum of squares of difference between

the observations and the line in horizontal direction in the
scatter diagram can be minimized to obtain the
estimates of £, and £, . This is known as reverse (or

inverse) regression method.
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Instead of horizontal or vertical errors, if the sum of

squares of perpendicular distances between the
observations and the line in the scatter diagram is

minimized to obtain the estimates of f, and f,, the

method is known as orthogonal regression or major

axis regression method.
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Instead of minimizing the distance, the area can also be

minimized. The reduced major axis regression
method minimizes the sum of the areas of rectangles
defined between the observed data points and the
nearest point on the line in the scatter diagram to obtain

the estimates of regression coefficients. This is shown in

the following figure:
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The method of least absolute deviation regression considers the sum of the absolute deviation of the observations

from the line in the vertical direction in the scatter diagram as in the case of direct regression to obtain the estimates of

A, and B,
No assumption is required about the form of probability distribution of &; in deriving the least squares estimates. For
the purpose of deriving the statistical inferences only, we assume that £ 's are observed as random variable with

E(¢)=0ar(¢)=0c" and Cov(e,e;)=0 forall i# j(i,j=12,..n).

This assumption is needed to find the mean, variance and other properties of the least squares estimates. The
assumption that £ 's are normally distributed is utilized while constructing the tests of hypotheses and confidence

intervals of the parameters.
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This method is also known as the ordinary least squares estimation. Assuming that a set of n paired observations

on (x,3,),i=12,..,n areavaiable which satisfy the linear regression model y=f, + /i X +¢&. So we can write the

model for each observationas y, = f,+ fx +¢,, ,(i=1,2,..,n).

The direct regression approach minimizes the sum of squares due to errors given by
S(ByB) =D =D (3,— By - Bx.)’
i=I i=lI

with respect to ff, and g,.
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The partial derivatives of S(/;, /) with respect to 3, are

aS{ﬁLﬂﬁl} —_— 3 = —
R 2;{ ¥, —B,— Bx)

and the partial derivative of S(/%./5,) with respect to /3, is

3S(B. B,
op,

: = _Ei{.}lf — By — Bx)x,.
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The solution of &, and /S, is obtained by setting

5By, B) _
88,

56, B) _
ap, '

The solutions of these two equations are called the direct regression estimators, or usually called as the ordinary

least squares (OLS) estimators of £, and /.
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This gives the ordinary least squares estimates b, of £, and b, of f, as

b,=7-bx
b] _ ‘r'i where
5 5 ¥ Vv
X Sy = Z{I,- =X)y, =¥,
i=1

fl

5. = Z(x! -¥),

i=l
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Further, we have

S8y B) -,
B = E;': 1) =2n,
O°S(By, ) <=
E,"ﬁ‘f _ng,.

9°8(5.8) = Eir = 2nx.
X
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The Hessian matrix which is the matrix of second order partial derivatives in this case is given as

fa!s[}g[”}g]} l:):]']:"'-31':1{5'[b!flg]}
. op; op\0p,
IS(BnB) S(hB)
0pyap, b,
(n nx
f’{-
:2 I’J({’ I)

where [=(1,1,..,1)" isa n-vector of elements unity and X = (XX )" isa n-vector of observations on X. The matrix H*
Is positive definite if its determinant and the element in the first row and column of H* are positive.
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The determinant of H* is given by

|H *‘ = E(fri xf —HEEE]
i=l

=2n) (x,-X)°
i=lI
> ().

The case when Z(xE -¥)" =0 is not interesting because then all the observations are identical, i.e., ¥, = ¢ (some constant).
i=l ]
In such a case there is no relationship between x and y in the context of regression analysis. Since Z(I, -x) >0,

i=l

therefore |H *|::=-0. So H* is positive definite for any (/, ) therefore S(f,,f,) has a global minimum at (h,,b,).



Direct regression method

The fitted line or the fitted linear regression model is

y=b,+bx
and the predicted values are
y=b+bx (i=12,..n).

The difference between the observed value y, and the fitted (or predicted) value j‘zf s called as a residual.

The " residual is

e =y ~y(i=12,...n).



B = (Xx) XYy
= (X'X)"'X'(XB+e)
= Po+(X'X)"'X'e
_ ﬁ“_l_(k;;.‘t’)'JX“E

n

#

- - i - _J
Consider the last two terms. By assumphion limy, ... (%j] =y = lim,_.. (ﬁ) _

Q

—1
Yy

. since the inverse of a nonsingular matrix 1s a continuous tunction of the elements

e

of the matnx. Considering —,

i



Consistency

Vixe)=xxa:.

E(x,g8x,) = 0.t #5.



S0 the sum 15 a sum ol independent, nomidentically distnbuted random vanables, each

with mean zero. Supposing that V(x; &) < == %¥t, the KLLN mmplies
I - 4 .

- E X; El' —F ﬂ

M =1

This imphies that

B == By.



This 15 the property ol strong consistency: the estimator converges almost surely to the
true value. If we has used a weak LLN (defined 1n terms of convergence in probability),

we would have fsimple, weak) consistency.

s The consistency proot does not use the normality assumption.



QUESTIONS!
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