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Maximum likelihood estimation

In the model ¥ = X f+ £, itis assumed that the errors are normally and independently distributed with constant variance o
ie.,

£~ N(0,a°I).

The normal density function for the errors is
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The likelihood function is the joint density of £, £,,....& givenas

Ltﬂ.fr:}=f[f{s.}
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Since the log transformation is monotonic, so we maximize In L(f.o") instead of L(f.57).
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The maximum likelihood estimators (m.l.e.) of f and o’ are obtained by equating the first order derivatives of In L(p.c%)

with respectto f and o to zero as follows:
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The likelihood equations are given by

X'XB=X'y
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&* =—(y-Xp)(y-Xp).



Since rank(.X) =k, so that the unique m.lLe. of /7 and o’ are obtained as
f=(X'X)'X'y

& = L(y-XB)y(y-Xp)
i

Next we verify that these values maximize the likelihood function. First we find
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Thus the Hessian matrix of second order partial derivatives of In L(/#,o°) with respectto /7 and a’ s

& nL(f.c%) & InL{f.c") )
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which is negative definite at f=8 and o =&
This ensures that the likelihood function is maximized at these values.

Comparing with OLSEs, we find that

i. OLSE and mle.of # aresame. Som.le. of f isalso an unbiased estimator of f7.
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ii. OLSE of g:l'3 s .';'l which is related to m.l.e. of ﬂrl as o = 5°. Som.le. of g:!'3 is a biased estimator of ﬂl’z.
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Cramer-Rao lower bound

Let &=(f.07). Assume that both /# and o are unknown. If Efl‘f-'i'} = then the Cramer-Rao lower bound for g is

grater than or equal to the matrix inverse of

& In L(&) Then
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QUESTIONS!
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