Exogeneity and Simultaneity

Professor V.M. Auken, PhD

Theorem

- i. Let $\hat{y} = Xb$ be the empirical predictor of y. Then \hat{y} has the same value for all solutions b of X'Xb = X'y.
- ii. $S(\beta)$ attains the minimum for any solution of X'Xb = X'y.

Proof:

i. Let b be any member in $b = (X'X)^-X'y + [I - (X'X)^-X'X]\omega$

Since $X(X'X)^{-}X'X = X$, so then

$$Xb = X(X'X)^{-}X'y + X[I - (X'X)^{-}X'X]\omega$$
$$= X(X'X)^{-}X'y$$

which is independent of ω . This implies that \hat{y} has same value for all solution b of X'Xb = X'y.

ii. Note that for any β ,

$$S(\beta) = [y - Xb + X(b - \beta)]'[y - Xb + X(b - \beta)]$$

$$= (y - Xb)'(y - Xb) + (b - \beta)'X'X(b - \beta) + 2(b - \beta)'X'(y - Xb)$$

$$= (y - Xb)'(y - Xb) + (b - \beta)'X'X(b - \beta) \quad \text{(Using } X'Xb = X'y\text{)}$$

$$\geq (y - Xb)'(y - Xb) = S(b)$$

$$= y'y - 2y'Xb + b'X'Xb$$

$$= y'y - b'X'Xb$$

$$= y'y - \hat{y}'\hat{y}.$$

Fitted values

Now onwards, we assume that X is a full column rank matrix.

If $\hat{\beta}$ is any estimator of β for the model $y = X\beta + \varepsilon$, then the fitted values are defined as $\hat{y} = X\hat{\beta}$ where $\hat{\beta}$ is any estimator of β .

In case of
$$\hat{\beta} = b$$
,
$$\hat{y} = Xb$$

$$= X(X'X)^{-1}X'y$$

$$= Hy$$

where $H = X(X'X)^{-1}X'$ is termed as 'hat matrix' which is

- i. symmetric,
- ii. idempotent (i.e., HH = H) and
- iii. $tr H = tr X(XX)^{-1}X' = tr X'X(X'X)^{-1} = tr I_k = k$.

Residuals

The difference between the observed and fitted values of study variable is called as residual. It is denoted as

$$e = y \sim \hat{y}$$

$$= y - \hat{y}$$

$$= y - Xb$$

$$= y - Hy$$

$$= (I - H)y$$

$$= \overline{H}y$$

where $\overline{H} = I - H$.

Note that

- (i) H
 is a symmetric matrix,
- (ii) \overline{H} is an idempotent matrix, i.e., $\overline{H}\overline{H}=(I-H)(I-H)=(I-H)=\overline{H}$ and

(iii)
$$tr\overline{H} = trI_n - trH = (n-k)$$
.

Properties of OLSE

(i) Estimation error

The estimation error of b is

$$b - \beta = (X'X)^{-1}X'y - \beta$$
$$= (X'X)^{-1}X'(X\beta + \varepsilon) - \beta$$
$$= (X'X)^{-1}X'\varepsilon.$$

(ii) Bias

Since X is assumed to be nonstochastic and $E(\varepsilon) = 0$

$$E(b-\beta) = (X'X)^{-1}X'E(\varepsilon)$$
$$= 0.$$

Thus OLSE is an unbiased estimator of β .

(iii) Covariance matrix

The covariance matrix of b is

$$V(b) = E(b-\beta)(b-\beta)'$$

$$= E\left[(X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}\right]$$

$$= (X'X)^{-1}X'E(\varepsilon\varepsilon')X(X'X)^{-1}$$

$$= \sigma^{2}(X'X)^{-1}X'IX(X'X)^{-1}$$

$$= \sigma^{2}(X'X)^{-1}X'IX(X'X)^{-1}$$

(iv) Variance

The variance of b can be obtained as the sum of variances of all $b_1, b_2, ..., b_k$ which is the trace of covariance matrix of b. Thus

$$Var(b) = tr[V(b)]$$

$$= \sum_{i=1}^{k} E(b_i - \beta_i)^2$$

$$= \sum_{i=1}^{k} Var(b_i).$$

Estimation of σ^2

The least squares criterion can not be used to estimate σ^2 because σ^2 does not appear in $S(\beta)$. Since $E(\varepsilon_i^2) = \sigma^2$ so we attempt with residuals e_i to estimate σ^2 as follows:

$$e = y - \hat{y}$$

$$= y - X(X'X)^{-1}X'y$$

$$= [I - X(X'X)^{-1}X']y$$

$$= \overline{H}y.$$

Consider the residual sum of squares

$$SS_{res} = \sum_{i=1}^{n} e_i^2$$

$$= e'e$$

$$= (y - Xb)'(y - Xb)$$

$$= y'(I - H)(I - H)y$$

$$= y'(I - H)y$$

$$= y'Hy.$$

Also

$$\begin{split} SS_{res} &= (y - Xb)'(y - Xb) \\ &= y'y - 2b'X'y + b'X'Xb \\ &= y'y - b'X'y \quad (\text{Using } X'Xb = X'y). \\ SS_{res} &= y'\overline{H}y \\ &= (X\beta + \varepsilon)'\overline{H}(X\beta + \varepsilon) \\ &= \varepsilon'\overline{H}\varepsilon \quad (\text{Using } \overline{H}X = 0). \end{split}$$

Since
$$\varepsilon \sim N(0, \sigma^2 I)$$
,
so $y \sim N(X\beta, \sigma^2 I)$.
Hence $y \, \overline{H} y \sim \chi^2 (n-k)$.

Thus
$$E[y'\overline{H}y] = (n-k)\sigma^2$$

or
$$E\left[\frac{y'\overline{H}y}{n-k}\right] = \sigma^2$$

or
$$E[MS_{res}] = \sigma^2$$

Thus an unbiased estimator of σ^2 is

$$\hat{\sigma}^2 = MS_{res} = s^2$$
 (say),

which is a model dependent estimator.

where
$$MS_{res} = \frac{SS_{res}}{n-k}$$
 is the mean sum of squares due to residual.

Covariance matrix of \hat{y}

The covariance matrix of \hat{y} is

$$V(\hat{y}) = V(Xb)$$

$$= XV(b)X'$$

$$= \sigma^{2}X(X'X)^{-1}X'$$

$$= \sigma^{2}H.$$

Gauss-Markov theorem

The ordinary least squares estimator (OLSE) is the best linear unbiased estimator (BLUE) of eta

Proof: The OLSE of β is

$$b = (X'X)^{-1}X'y$$

which is a linear function of y. Consider the arbitrary linear estimator $b^* = a^*y$ of linear parametric function $\ell^*\beta$ where the elements of a are arbitrary constants.

Then for b^* ,

$$E(b^*) = E(a,y) = aX\beta$$

and so \boldsymbol{b}^* is an unbiased estimator of ℓ ' $\boldsymbol{\beta}$ when

$$E(b^*) = a' X \beta = \ell' \beta$$

$$\Rightarrow a'X = \ell'$$
.

Since we wish to consider only those estimators that are linear and unbiased, so we restrict ourselves to those estimators for which $a'X = \ell'$.

Proof:

Further

$$Var(a'y) = a'Var(y)a = \sigma^{2}a'a$$

$$Var(\ell'b) = \ell'Var(b)\ell$$

$$= \sigma^{2}a'X(X'X)^{-1}X'a.$$

Consider

$$Var(a'y) - Var(\ell'b) = \sigma^2 \left[a'a - a'X(X'X)^{-1}X'a \right]$$
$$= \sigma^2 a' \left[I - X(X'X)^{-1}X' \right] a$$
$$= \sigma^2 a' (I - H)a.$$

Since (I - H) is a positive semi-definite matrix, so

$$Var(a'y) - Var(\ell'b) \ge 0.$$

This reveals that if b^* is any linear unbiased estimator then its variance must be no smaller than that of b.

Proof:

If we consider $\ell = (0,0,\ldots,0,1,0,\ldots,0)$ (here 1 occurs at ℓ^{in} place), then $\ell'b = b_i$ is best linear unbiased estimator of $\ell'\beta = \beta_i$ for all $i = 1,2,\ldots,k$.

Consequently b is the best linear unbiased estimator of β , where 'best' refers to the fact that b is efficient within the class of linear and unbiased estimators.

QUESTIONS!

