


Reduced major axis regression method

The direct, reverse and orthogonal methods of estimation minimize the errors in a particular direction which is usually the
distance between the observed data points and the line in the scatter diagram. Altemnatively, one can consider the area
exlended by the data points in certain neighbourhood and instead of distances, the area of rectangles defined between
corresponding observed data point and nearest point on the line in the following scatter diagram can also be minimized.
Such an approach is more appropriate when the uncertainties are present in study as well as explanatory variables. This
approach is termed as reduced major axis regression.
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Eeduced major azas method

Suppose the regression line is ¥ = £ + §,.X, on which all the observed points are expected to lie. Suppose the points

(x.,v) i=L2,...n are observed which lie away from the line.



The area of rectangle extended between the ™ observed data point and the line is
A=(X ~x ¥ ~y) (i=L2,..,n)
where (X, Y ) denctes the # pair of observation without any error which lie on the line.

The total area extended by n data pointsis A4 = > (X, ~x (¥, ~ »).
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All observed data points (x,.v,), (i =L2,...,n) are expected to lie on the line

Y =5+84X,
and let

E=Y-8-8X =0

i

So now the objective is to minimize the sum of areas under the constraints £ to obtain the reduced major axis estimates

of regression coefficients. Using the Lagrangian multiplies method, the Lagrangian function is
LR = Z"dl _E.HJ'E:
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where I,.... 1 are the Lagrangian multipliers. The set of equations are obtained by setting
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Substituting £ in Z i, =0, we get the reduced major axis regression estimate of f3, is obtained as

1=l
ﬁnk.u =y- ng.w-?

where ,4.’3, aye IS the reduced major axis regression estimate of £, Using X, =x, + 4., 4, and S5, in E uX =0,
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Reduced major axis regression method

Let w, =x —X and v, =y, —¥. then this equation can be re-expressed as Z{v, — B v, + B +28x)=0.

Using iur - i"’- =10, we get
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Solving this equation, the reduced major axis regression estimate of /f is obtained as

b '5'11'
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where
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We choose the regression estimator which has same sign as that of s,



Least absolute deviation regression method

The least squares principle advocates the minimization of sum of squared errors. The idea of squaring the errors is useful in
place of simple errors because the random errors can be positive as well as negalive. So consequently their sum can be
close to zero indicating that there is no error in the model which can be misleading. Instead of the sum of random errors,
the sum of absolute random errors can be considered which avoids the problem due to positive and negative random

errors.

In the method of least squares, the estimates of the parameters :‘5':1 and ﬁ’, in the model ¥, = ﬂu + ﬁ.-’f.- +E,.(i=1 2,....nm)

are chosen such that the sum of squares of deviations z EII is minimum. |n the method of least absolute deviation (LAD)
=]

regression, the parameters ﬁn and g are estimated such that the J,,;

sum of absolute deviations Zli’s‘,l is minimum. It minimizes the

1=]

absolute vertical sum of errors as in the following scatter diagram:

(X %)

Least absohlite dewiaton regression



The LAD estimates /3, and /3, are the values /3, and /3, respectively which minimize LAD(S,. )= |y, - B, - fx,

1
for the given observations (x.» ){i=L12,.. n)

Conceptually, LAD procedure is simpler than OLS procedure because |e| (absolute residuals) is a more straightforward
measure of the size of the residual than e? (squared residuals). The LAD regression estimates of /3, and /5, are not
available in closed form. Rather they can be obtained numerically based on algorithms. Moreover, this creates the
problems of non-uniqueness and degeneracy in the estimates. The concept of non-unigueness relates to more than one
best lines passing through a data point. The degeneracy concept describes that the best line through a data point also
passes through more than ane other data paints. The nen-uniguenass and degencraey conceplts are used in algerithms to
judge the quality of the estimates. The algorithm for finding the estimators generally proceeds in steps. Al each step, the
best line is found that passes through a given data point. The best line always passes through another data point, and this
data point is used in the next step. When there is non-uniqueness, then there are more than one best lines. When there
is degeneracy, then the best line passes through more than one other data point. When either of the problem is present,
then there is more than one choice for the data point to be used in the next step and the algorithm may go around in circles
or make a wrong choice of the LAD regression line. The exact tests of hypothesis and confidence intervals for the LAD
regression estimates can not be derived analytically. Instead they are derived analogous to the tests of hypothesis and

confidence intervals related to ordinary least squares estimates.



Estimation of parameters when X is stochastic

In a usual linear regression model, the study variable is supped to be random and explanatory variables are assumed to be
fixed. In practice, there may be situations in which the explanatory variable also becomes random.

Suppose both dependent and independent variables are stochastic in the simple linear regression model

- y=B+pX+s

where £ is the associated random error component. The observations (x,.y, ), i=12,...n are assumed to be jointly

distributed. Then the statistical inferences can be drawn in such cases which are conditional on X

Assume the joint distribution of X and y to be bivariate normal N(x,, 4 ., ,fr_f,,ﬂ} where U, and H, are the means of X
and ¥; r:r; and na:r1 are the variances of X and y, and 2 is the correlation coefficient between X and y. Then the

conditional distribution of y given X =X is univariate normal conditional mean
E(y| X =x)=p,, = f,+ fix

and conditional variance of y given X =x is

Var(y|X =x)=a’ =a’(l-p*)
where
-Bl} = .|“_|.' - #.I.-B]

and



When both X and y are stochastic, then the problem of estimation of parameters can be reformulated as follows. Consider

a conditional random variable y]X = x having a normal distribution with mean as conditional mean M, and variance as

conditional variance Var(ylX =x)= cr_L . Obtain n independently distributed observation 1lv.i=1L2,..n from
N{u,,.e,,) with nonstochastic X. Now the method of maximum likelihood can be used to estimate the parameters

which ylelds the estimates of /#, and /3, as earlier in the case of nonstochastic X as

-

b=y-b%
and
= L
bl ==
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respectively.

Moreover, the correlation coefficient
_Ely-p WX —p)
ﬂ-" ﬂ-.l.

can be eslimated by the sample correlation coefficient
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which is same as the coefficient of determination.

Thus R? has the same expression as in the case when X is fixed.

Thus R? again measures the goodness of fitted model even when X is stochastic.
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