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We assume that &, 's (i =1.2,...,n) are independent and identically distributed following a normal distribution N(0,07).

Now we use the method of maximum likelihood to estimate the parameters of the linear regression model

v.=F+pBx+e (i=L2,..,n),

the observations y, (i=1,2,....,n) are independently distributed with N(5, + f.x,.a”) for all j =1,2,....n. The likelihood

function of the given observations (x,..y,) and unknown parameters B,. B, and o’ s

L(x,y;: B, B0 = ﬁ(z;z J ._ EKP[—ﬁf}Z =B - Bx) }

J=|.



The maximum likelihood estimates of /3, 5, and o’ can be obtained by maximizing L(x,,y:8,,8.0°) or equivalently
InL(x,y;:8,,5.0") where
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The normal equations are obtained by partial differentiation of log-likelihood with respectto f,, f, and o’ equating them

to zero
dlnL(x.y;:p,.5.0") 1
S =—— r— B, —Fx)=0
L L300, i)
olnL(x,y; P, P.0°) 1

Z(}:J - JBU - 1'3|IJ }IJ =0
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InL(x,y: B P0’) _ n N 1
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> (y,-B,-Bx) =0.
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The solution of these normal equations give the maximum likelihood estimates of f3,, 5, and & as

by=y-bx
2D
]= = n . = 1;?'
Z{IJ _f}- S xx
i=l
and
{—}r _E|“ _:J;l:".-.']1
§ =2
"

respectively.



It can be verified that the Hessian matrix of second order partial derivation of In L with respectto 3,4, and ¢ is negative

definite at f, = Eﬁ, B =5|, and g° =§° which ensures that the likelihood function is maximized at these values.
Note that the least squares and maximum likelihood estimates of f, and /3, are identical when disturbances are normally

distributed. The least squares and maximum likelihood estimates of o’ are different. In fact, the least squares estimate of g* is

=

l i -
s =——2. =¥
i=l

so that it is related to maximum likelihood estimate as §° = 5

Thus gu and E;I are unbiased estimators of £, and f,
whereas §° is a biased estimate of &2, but it is asymptotically unbiased.

The variances of JSU and E;, are same as that of b, and b, respectively but the mean squared error

MSE(5%)<Var(s*).



Testing of hypotheses and confidence interval estimation for slope parameter

Now we consider the tests of hypothesis and confidence interval estimation for the slope parameter of the model under two

cases, viz., when & is known and when o’ is unknown.

Case 1: When & is known

Consider the simple linear regression model y, =f,+ fx, +& (i=12,....n). ltis assumed that & 's are independent

and identically distributed and follow N(0,&7).

First we develop a test for the null hypothesis related to the slope parameter

H,: B =Py where S, is some given constant.

Assuming o to be known, we know that and b, is a linear combination of normally distributed »,'s, so

5

o

E(b)=f,, Var(b)=Z- b ~N [ﬁi]
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and so the following statistic can be constructed

i b—-p
7 = | ﬁm
o
S.T.'I:
which is distributed as N(0, 1) when H, is true.

A decision rule to test H, : 5, # 5, can be framed as follows:

Reject H, if |Z,|> z,.,

where Z_,, isthe a/2 percent points on normal distribution. Similarly, the decision rule for one sided alternative

hypothesis can also be framed.



The 100(1—-a)% confidence interval for /5, can be obtained using the Z, statistic as follows:
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So 100(1-a)% confidence interval for /7, is

ﬂ': ﬂrz
b, — :a.-'_ul’_-rbl + Zar1,y ’_
S_f.': S.u

where Z_ , isthe &« /2 percentage point of the N(0,1) distribution.



Case 2: When o’ is unknown

When o is unknown, we proceed as follows. We know that

L5|L5| 9
r;" ~ ¥ (n-2).
o

Further, 8§, / " and b, are independently distributed. This result will be proved formally later in module on multiple linear
regression. This result also follows from the result that under normal distribution, the maximum likelihood estimates, viz.,
sample mean (estimator of population mean) and sample variance (estimator of population variance) are independently

distributed, so b, and s° are also independently distributed.



Thus the following statistic can be constructed:

{ :bl_ﬂl
{i-_:

0 r
x.'r_l.'

which follows a t-distribution with (n - 2) degrees of freedom, denoted as [, ,, when H, is true.



Adecisionruletotest H,: 5, = 5, isto

reject H, if |fo|> t, 2.

where I, _, ., isthe «/2 percent point of the tdistribution with (n - 2) degrees of freedom.

Similarly, the decision rule for one sided alternative hypothesis can also be framed.

The 100(1-a)% confidence interval of /3, can be obtained using the t; statistic as follows :
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So the 100(1 — & )% confidence interval £, is

bl_"r.l—"'.:f" I5:5‘$'-‘h]—|_'r1r—".:1r"' S‘S—rﬁ '
TN (n-2)s N (n—2)s




Testing of hypotheses and confidence

interval estimation for intercept term
e«

Now, we consider the tests of hypothesis and confidence interval estimation for intercept term under two cases, viz., when

2. 2,
¢~ is known and when ¢~ is unknown.

Case 1: When o is known

Suppose the null hypothesis under consideration is £, . 3, = Gy,

—

| (1 X
where o~ is known, then using the resultthat E(b,) = S,, Var(b,)=c” L— -
n s

] and b, is a linear combination of

X

normally distributed random variables, the following statistic

has a N(0, 1) dislribulion when M, is liue.



Testing of hypotheses and confidence

interval estimation for intercept term
e«

A decision rule to test H - ;’3‘“ = ﬁm can be framed as follows:
Reject Hy if |Zo|> z.-

where z_, isthe & /2 percentage points on normal distribution.

Similarly, the decision rule for one sided alternative hypothesis can also be framed.

The 100(1 )% confidence intervals for /3, when o is known can be derived using the Zu statistic as follows:

P




Testing of hypotheses and confidence

interval estimation for intercept term
e«

So the 100(1 — )% of confidential interval of £, is

{bﬂ—:u.-l\/ﬂ'z[l+x—_}bn+:ﬂ,.l\/nl(l+x—_J].
n s, nos.




Testing of hypotheses and confidence

interval estimation for intercept term
e«

When o” is unknown, then the statistic is constructed

’f’n - JBLI'I;?

Case 2: Wheno is unknown |

SS { 1 ]
—res | 4
n-2\n s_

which follows a t-distribution with (n - 2) degrees of freedom, i.e., [, , when H, is true.

A decision rule to test H,: f, = [i,, is as follows:

Reject H; whenever |In|} Ly 2 ai2

where I, 5., isthe @ /2 percentage point of the t-distribution with (n - 2) degrees of freedom.

Similarly, the decision rule for one sided alternative hypothesis can also be framed.



Testing of hypotheses and confidence

interval estimation for intercept term
e«

The 100(1—a)% of confidential interval of /3, can be obtained as follows:

Consider




Testing of hypotheses and confidence

interval estimation for intercept term
e«

The 100 (1-a)% confidential interval for S, is

b,—t ., 55, 1, x b+t 55 e LA |
T An-2ln s T An-2\n s_

Confidence interval for o

., S8 ,
A confidence interval for &~ can also be derived as follows. Since ——~ ¥, ,. thus consider
-

2 55 5 The corresponding 100(1—&)% confidence interval for & is
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QUESTIONS!
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