


Now in statistics the reliability of a point estimator is measured by its
standard error. Therefore, instead of relying on the point estimate alone,
we may construct an interval around the point estimator, say within two or
three standard errors on either side of the point estimator, such that this
interval has, say, 95% probability of including the true parameter value.
This is roughly the idea behind interval estimation.

To be more specihe, assume that we want to ind out how "close” i1s, sav,
s to fs. For this purpose we try to find out two positive numbers § and «,
the latter lying between 0 and 1, such that the probability that the random
interval (f; — 8, fis + §) contains the true f; is 1 — o, Symbaolically,

Prif:—S<fh=fmiil=1—a



Such an interval, if it exists, is known as a conhdence interval; 1 — o 15
known as the conhdence coefhcient; and o (0 =@ = 1) 15 known as the
level of significance.” The endpoints of the confidence interval are known
as the confidence limits (also known as critical values), f; — § being the
lower conhdence s and I|'J_ + 4 the upper conhdence fimit. In passing,
note that in practice & and 1 — o are often expressed in percentage forms as
100w and 100{]1 — o) percent.

“Also known as the probability of committing a Type 1 ermor. A Tyvpe | ermor consisis in
rejecting a true hyvpothesis, whereas a Tvpe 11 ermor consists in accepting a false hypothesis.
i This topic is discussed more fully in App. A.) The symbol o is also known as the size of the
(ztatiztical) test.



RYPOTHESIS TESTING

Two-Sided or Two-Tail Test

To illustrate the conhdence-interval approach, once again we revert to the
consumption-income example. As we know, the estimated marginal propen-

sity to consume (MPC), f, is 0.5091. Suppose we postulate that

Hy: fy = 0.3
H-|:ﬁ1 5‘5['3

that is, the true MPC is 0.3 under the null hypothesis but it is less than or
greater than 0.1 under the alternative hvpothesis. The null hvpothesis 15 a
simple hypothesis, whereas the alternative hypothesis is composite; actually
it 15 what is known as a two-sided hypothesis. Very often such a two-sided
alternative hvpothesis reflects the fact that we do not have a strong a pri-
ori or theoretical expectation about the direction in which the alternative
hypothesis ii-hl:l.lldﬂl.‘l‘ll:ﬂ"t from the null hvpothesis.



AYPOTHESIS TESTING

Is the observed f; compatible with Hy?'
We know that in the long run intervals like (0.4268, 0.5914) will contain the true

B with 95 percent probability.

Consequently, in the long run (i.e., repeated sampling) such intervals provide a
range or limits within which the true 2 may lie with a confidence coefficient

of, say, 95%. Thus, the confidence interval provides a set of plausible null
hypotheses. Therefore, if 2 under HO falls within the 100(1 — a)% confidence
interval, we do not reject the null hypothesis; if it lies outside the interval, we may
reject it.7 This range is illustrated schematically in Figure.



RYPOTHESIS TESTING

Values of 8, lving in this interval are
plausible under H, with 100{1 = e 5%
confidence. Hence, do not reject
H, it fi, lies in this region.

Byt selfy) Byvr_, selfiy)

A1 — )% confidence inerval for 5.



AYPOTHESIS TESTING

Decislon Rube: Construct 8 1001 — o)% confidence mberdal for ds If the A, under Hy, falls
within this confidence imensal. 9o not reject H., Dul § it falls outside thes imernval, reject H.,

Following this rule, for our hypothetical example. HO: B2 = 0.3 clearlv lies
outside the 95% confidence interval givenin = ¢ 4248 = g, = 0.5914

Therefore, we can reject the hypothesis that the true MPC is 0.3, with 95%
confidence. If the null hypothesis were true, the probability of our obtaining a
value of MPC of as much as 0.5091 by sheer chance or fluke is at the most
about 5%, a small probability.

In statistics, when we reject the null hypothesis, we say that our finding is
statistically significant. On the other hand, when we do not reject the null
hypothesis, we say that our finding is not statistically significant.



This 15 the property ol strong consistency: the estimator converges almost surely to the
true value. If we has used a weak LLN (defined 1n terms of convergence in probability),

we would have fsimple, weak) consistency.

s The consistency proot does not use the normality assumption.



|Jnint confidence region for /5, and S,

A joint confidence region for /i, and f can also be found. Such region will provide a 100(1-«)% confidence that both the

estimates of £, and f, are correct. Consider the centered version of the linear regression model

Yi = ﬁ:; + ﬁl {'Ta o f) + &

where f, =/ +BX . Theleast squares estimators of /3, and f, are by =¥ and b, = Siﬁ respectively.
I:';"I'.'I:
Using the results that When o is known, then the statistic
E(b,) = By by -
“_fﬂ ~ N(0,1)

E(b)= 4, o’

. - n
Var(b,) = 2.,

n and

Var(b, ) = ZT—_

X




|Jnint confidence region for /5, and S,

Moreover, both the statistics are independently distributed. Thus

4

II-" £

br: — ;B‘ 7
= = |~ A
=
'\ n
and
. 52
bl B -"?L . I]_"
L
LY S.l.'.'r

are also independently distributed because b; and b, are independently distributed. Consequently, the sum of these two

H{’b‘: _zﬁ:]z + S.ct{bl _EI"‘f-:.’I]2 MXJ

5 -
(o) o




|Jnint confidence region for /5, and S,

Since and SS,, is independently distributed of b, and b, so the ratio
D, 2 [nib.: -8, s.(b=B) J /;I
J.c fims I:TE 2
5

(e)
[“%-* ) /(n_z} o
e

Substituting &, =h, +hX and B, =B, + X, we get

) =]

where

0, = by~ +23 5 by~ BB~ B)+ 3 % 6~ A



|Jnint confidence region for /5, and S,

holds true for all values of £, and £, so the 100(1-a)% confidence region for 4,and g, is

[2] S <F,
2 Jss, =

This confidence region is an ellipse which gives the 100(1 -« )% probability that /&, and 8, are contained simultaneously in

this ellipse.



|Analy5is of variance

The technique of analysis of variance is usually used for testing
the hypothesis related to equality of more than one parameters,
like population means or slope parameters.

It is more meaningful in case of multiple regression model when
there are more than one slope parameters.

This technique is discussed and illustrated here to understand the
related basic concepts and fundamentals which will be used in
developing the analysis of variance in the next module in multiple
linear regression model where the explanatory variables are more
than two.



|Analy5is of variance

A test statistic for testing 7, : 5 =0 can also be formulated using the analysis of variance technique as follows.
On the basis of the identity ¥, — ¥, =(¥,—¥)=(¥ —¥),
the sum of squared residuals is
S(b)Y=> (3 -5
i=l
=2 =P+ 23 -Y) 220 -V, - ).
i=l i=1 i=1

Further consider Z (y,— ¥y, -¥y)= Z (¥, —¥)b(x —X)

J=I J:I

= blzi {Ie _E}:
i=1

=Y (5,-7)"
i=l



|Analy5is of variance

Thus we have i (y,—¥) = i (y,-3) +i (3, —7).
i=1 i=l i=l

The term Z{}.-J_Ff i If all observations y, are located on a straight line, then in this case | of squares of y (i.e., 5§ ) or

covTecied
i=1

total sum of squares denoted as s,

The term Z{ ¥ —,ff-‘r.]lI describes the deviation: observation minus predicted value, viz., the residual sum of squares, i.e.:

i=1
it

I'El‘h'rlfrl.'; - Z{.}J _j'},. :Ii

i=1

whereas the term Z{ ¥, — }7}2 describes the proportion of variability explained by regression,

i=l

i
ol " — _:'
'5"5;'“:' = z I:.},r' _.},) .



|Analy5is of variance

If all observations y, are located on a straight line, then in this case

=55

corrected reg”

ZU’,- — )" =0 and thus S
i=lI

Note that S5, is completely determined by b, and so has only one degrees of freedom. The total sum of squares

S, = Z(y, ~¥)" has (n-1) degrees of freedom due to constraint Z{ y,—v)=0 and SS,,. has (n-2)degrees of

i=l i=1

freedom as it depends on b, and b,.

All sums of squares are mutually independent and distributed as Jr:'jf with df degrees of freedom if the errors are normally

distributed.



|Analy5is of variance

The mean square due to regression is and mean square due to residuals is
LS‘S Lng
MS."C,E —_— —= J”LSTE=¢-
1 n—2

The test statistic for testing H,: 5 =0 is

MS

FEX

MSE

)

If H,:p =0 istrue, then MS, _ .and MSE are independently distributed and thus F, ~ F

La-2"

The decision rule for H,: f # 0 is toreject H, if F, > F,

Jr=2 =gy

at < level of significance. The test procedure can be described in an Analysis of Variance table.



|Analy5i5 of variance

Analysis of variance for testing /H : /5 =10

Source of variation  Sum of squares Degrees of freedom Mean square F
Regression SS, .. 1 MS, ., MS, | MSE
Residual 5SS n—2 MSE

Total L n-—1

w

Some other forms of Sj‘r‘m ) SSM_ and S,, can be derived as follows:

The sample correlation coefficient then may be written as

5.
x Moreover, we have b, =—




|Analy5is of variance

The estimator of & in this case may be expressed as
'1 "
. 2

n—2 Various alternative formulations for SS,, are in use as well:

SSM — Z[y‘ - (bO +b1.\" )]2
=1

= X[(J’, —-y)-b(x _f)]z

= S_\_T + bl-s.u - 2bls‘\_\*

=5 —bs
»

1 * xx

(S,\'_\‘)-
-9 — a
v
4 s

XX




|Analy5is of variance

Using this result, we find that  S§ =

corrected 5”_

and




I Goodness of fit of regression ‘

It can be noted that a fitted model can be said to be good when residuals are small. Since SS,,, is based on residuals, so a
measure of quality of fitted model can be based on SS,,.. When intercept term is present in the model, a measure of

goodness of fit of the model is given by

RI —1- SSrE.;
5

»

58

reg

Sy
This is known as the coefficient of determination. This measure is based on the concept that how much variation in y's
stated by s, is explainable by SS,,;. and how much unexplainable part is contained in SS,,.. The ratio S5,/ s,, describes
the proportion of variability that is explained by regression in relation to the total variability of y. The ratio S§,./ s,

describes the proportion of variability that is not covered by the regression.



I Goodness of fit of regression ‘

It can be seen that
2.2
R = r,

where r,, is the simple correlation coefficient between x and y. Clearly 0<R* <1 , 50 a value of R” closer to one

indicates the better fit and value of RZ closer to zero indicates the poor fit.
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