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oimple Linear Reqession Analys

e We consider the modeling between the
dependent and one Iindependent variable.
When there is only one independent variable
In the linear regression model, the model is
generally termed as simple linear regression
model. When there are more than one
iIndependent variables in the model, then the
linear model is termed as the multiple linear
regression model.
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Jimple Linear Regression Analysis

where y is termed as the dependent or study variable and Xis termed as independent or explanatory variable.

The terms f and i, are the parameters of the model. The parameter f, is termed as intercept term and the parameter

ﬂl 15 termed as slope parameter. These parameters are usually called as regression coefficients. The unobservable
error component & accounts for the failure of data to lie on the straight line and represents the difference between the true
and observed realization of y. This is termed as disturbance or error term. There can be several reasons for such

difference, e.g., the effect of all deleted variables in the model, variables may be qualitative, inherit randomness in the

observations efc. We assume that £ is observed as independent and identically distributed random variable with mean zero

and constant variance . Later, we will addiionally assume that ¢ is nomally distributed.



oimple Linear Reqession Analys

e The independent variable is viewed as
controlled by the experimenter, so it is
considered as non-stochastic whereas y Is
viewed as a random variable with

E{F}zﬁu +ﬁ]"¥

and
Var(y) = o’



Jimple Linear Regression Analysis

e Sometimes X can also be a random variable.
In such a case, instead of simple mean and
simple variance of y, we consider the
conditional mean of y given X = x as

E(y|x)=p, +px

and the conditional variance of ygiven X=x as

T

Var(y|x)=0".

When the values of £, and o are known, the model is completely described.



Jimple Linear Regression Analysis

The parameters ff,. f; and o are generally unknownand £ is unobserved. The determination of the statistical model

y=f,+ X +¢ depends on the determination (i.e., estimation ) of /,/, and ¢”.

In order to know the value of the parameters, n pairs of observations (X, ), )(i=1,...n) on (X,y) are observed/collected

and are used to determine these unknown parameters.

Various methods of estimation can be used to determine the estimates of the parameters. Among them, the least squares

and maximum lkelihood principles are the - popular methods of estimation.



The Likelinood Function

Suppose a sample of s1ze n of a random vector y. Suppose the joint density of ¥ =

( VI ... Va ) 15 charactenized by a parameter vector By :

fa{ Y, 0p).

This will often be referred to using the simphhed notation f{ 8y ).



The Likelinood Function

The likelthood function 1s just this density evaluated at other values 8

LiY.B) = fo(Y.0).8 € 0. where © 1s a parameter space.
e If the n observations are independent, the likehhood function can be written as
i
L(Y.8) =[]/ (3:.8)
=1

where the f; are possibly of different form.



The Likelinood Function

e Ewven if this 1s not possible, we can always factor the likelihood into coniributions
of observations, by using the fact that a joint density can be factored into the

product of a marginal and conditional (doing this iteratively)

L(Y.8) = f(v1.9) f(y2|v1.8) falvrv2.0) - flveviyz. .. ¥i—a. 8)



The Likelinood Function

To simplity notation, define x = {vyr..yma bt =2

= S.t=1

where § 15 the sample space ot ¥. {With this, condibioming on x| has no effect and gives

a marginal probability). Now the hikehihood function can be written as

]
L(Y.0) = [ ]/ (v|x.0)

Jeu]



The Likelinood Function

The cntenon tunction can be defined as the average log-likelihood function:

. l , | « .
5(6) = ~InL(Y.8) = FE In (v |x.8)

-

The maximum hikelihood estimator 15 defined as 8 = argmax s,(8),

where the set maximized over 1s defined below. Since In(-) 15 a monotonic increasing

function, In L and L maximize at the same value of 8. Dividing by n has no etfect on 8.

Note that one can easily modify this to include exogenous condibioning vanables

in x; in addition to the y; that are already there. This changes nothing in what follows,

and therefore 1t 1s suppressed to clanfy the notation.



To show consistency of the MLE, we need to make explicit some assumptions.

Compact parameter space § = ©. a open bounded subset of ®B*.
Maximixation is over O, which is compact.
This imphies that 6 15 an interior point of the paramerter space =)

Uniform convergence  5,(0) = lim Fo,5,10) =5.(0.8p). VO £ B.

—

We have suppressed ¥ here tor simplicity. This requires that almost sure convergence

holds for all possible parameter values.



Continuity  5,(8) is continuous in 6.8 £ ©.
This implies that 5.( 8, 8p) 15 continuous 1n 6.

Identification §=( 8,8y ) has a umque maximum in its first argument.
We will use these assumptions to show that B Bp. a.s.—almost surely

First, 8 certainly exists, since a continuous function has a maximum on a compact

scl.

Second, for any 8 5 8 by Jensen's mnequality ( In(-) 15 a concave function).

LO)\Y _, (. L(®)
E('”(Lw'{.])) *'"(‘E(Lmu;))



Mow, the expectation on the RHS 1s

E L{0) ) L(8) L) Body=1.
(L[Hun L(Bg) e

since L(8y ) is the density function of the observations. Therefore, since In{1) = (),

(7)) <



or

-E[E.lr'-ﬂ.l.l - l:'E[iJrl.HU]] = 0.

Taking hmits, this 1s

5.(8.8p) —5=(8p.8p) =0

except on a set of zero probability (by the umiform convergence assumption).



By the 1dentihication assumption there 15 a unique maximizer, so the mequality 1s

strict 1 © # Bp:

5.18,8p) —5=(6p,8p) << 0.¥8 5 By,
However, since 8 is a maximizer, independent of n. we must have

5ea (0. 8) — 5(Bp.8p) = 0.



These last two inequalities imply that i
lim 8 = B, a.s.

i —+oa

This completes the proot of strong consistency of the MLE. One can use weaker as-

sumptions to prove weak consistency (convergence in probability to 8g) of the MLE.

This is omitted here.
Note that almost sure convergence implies convergence in probability.



The score function

Differentiability

Assume that 5,(8) is twice continuously differentiable in N{Bp), at least when n is large enough.

To maximize the log-likelihood function, take derivatives: g, (¥,8) = Dgs,(8)

I H .

_ ;Eﬂglnff_].}:r_f.ﬂ}
=1
I M

= — B).
.I'J'I;gjl:: /

This 15 the score vector (with dim K x 1). Note that the score function has ¥ as an

argument, which implies that i1t 1s a random function. ¥ will often be suppressed for

clanty, but one should not torget that 1t 1s still there.



The score function

The ML estimator 8 sets the derivatives to zero: - 1 & -
£q(8) = - Zg;f_ﬂj = 0.
=1

We will show that Eg [g,(8)] = 0, ¥i. This is the expectation taken with respect to

the density f(8), not necessarily f(8g).

Fale:(®)] = [ [Polnf(olr,0)]f0lx. @)

= fﬁ:r —5 [Daf (e, 8)] S (v B) v
I%ls V)

_ f Def(3i|x:, B)dys.



The score function

(nven some regulanty conditions on boundedness of Dg /., we can switch the order of

mtegration and differentiation, by the dominated convergence theorem. This gives

Folg(®)] = Do [ ft(rilx.0)d,
= [yl
0.
o S0 Falg:(8) = 0: the expectation of the score vector is zero.

e This hold for all ¢, so it imphes that Egg, (¥, 8) = 0.
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