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A model from economic theory:

xi = xi(pi, mi,z;)
e x;1s (5 % | vector of quantities demanded
e p;1s G x| vector of prices
e m; 15 Income

e z; 1s a vector of individual charactenstics related to preferences
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Suppose a sample of one observation of n individuals® demands at ime perod ¢ (this

15 a cross section). The model 15 not estimable as 1t stands.

e The form of the demand function 1s different for all i.

* Some components ol z; are subject to fluctuations that are not observable to

outside modeler (people don’t eat the same lunch every day). Break z; into the

observable components w; and an unobservable component g;.
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An estimable (e.g., econometric) model 1s

! '
xi = Bo+ piPp + miPm + wiPy + €
We have imposed a number of restrictions on the theoretical model:
¢ The functions x;(-) which may differ for all i have been restricted to all belong

to the same parametric famuly.

o Of all parametric families of functions, we have restricted the model to the class

of hnear 1n the vanables functions.
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These are very strong restrictions, compared to the theoretical model. Furthermore,
these restrictions have no theoretical basis. The validity of any results we obtain
using this model will be contingent on these restrictions being correct. For this reason,
specification testing will be needed, to check that the model seems to be reasonable.
Only when we are convinced that the model 1s at least approximately correct should we
use 1t for economic analysis. In the next sections we will obtain results supposing that
the econometric model 1s correctly specified. Later we will examine the consequences

of misspecification and see some methods for determining 1f a model 1s correctly spec-

ified.
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The classical hinear model 1s based upon several assumptions.

|. Linearity: the model is a linear function of the parameter vector Py :

Yi :x:.B{l t £,

or i matnx form,

y=Xpg +e,

'
wherevisn <1, X = ( X] X2 -+ Xn ) . where x; 1s K = 1, and By and € are
conformable. The subscript “0” in By means this is the true value of the unknown
parameter. It will be suppressed when 1t’s not necessary for clanty. Linear
models are more general than they might first appear, since one can employ

nonlinear transformations of the vanables:
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'(P[J{:r] - [ [PI{H-.',I:' [PE{H-I::' [Pp[“'r] ] B[J &

(The &;( ) are known functions). Defining y; = @gy(z; ). x;1 = @1(w;), etc. leads to

a model in the form of equation (??). For example, the Cobb-Douglas model
z= AH'E: H'E’ exp(g)

can be transformed logarithmically to obtain

Inz = Ind + Balnws + Balnws + €.
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2. 11D mean zero errors:

E(e) — 0
Var(e) = E(eg') = oyl,
3. Nonstochastic, linearly independent regressors
(a) X has rank K
(b) X 1s nonstochastic
(c) lm,, ... %X’X = (Jy. a finite positive definite matnx.

4. Normality (Optional): £ 1s normally distributed
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e Estimation by least squares

The objective is to gain information about the unknown parameters fpand ﬂﬁ.

T

|§| = argminx[ﬁ]=2{}": 1”3}

=1

s(B) = (v—XB) (v—XB)

= Vy—-2/XB+pX'XB

2

= |y-XB|’
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This last expression makes 1t clear how the OLS estimator chooses |3 : 1t minimizes the

Euclidean distance between y and XP.

¢ To minimize the criterion s([3}, take the f.o.n.c. and set them to zero:

Dgs(B) =-2X"y+2X'Xp =0

50

B=(XX) XYy
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e To verify that this 1s a mimimum, check the s.o.s.c.:

Dys(B) =2X'X
Since p(X') = K, this matrix 1s positive definite, since 1t’s a quadratic form in a
p.d. matrix (1dentity matrix of order n), so ﬁ 15 1n fact a minimizer.
o The fitted values are 1n the vector y = XP.

o The residuals are in the vectorg =y — X |3
e« Note that

vy = XP+e

— XP+é
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e Estimating the
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e Goodness of fit
The fitted model 1s

y=Xp+é

Take the inner product:
Vy=PXXB+2pXE+8E

But the middle term of the RHS is zero since X'& = 0, so

Vy=PBXXB+&E
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The uncentered R2 is defined as

8¢

Vy

BX'XP
¥y

| Pyy ||I*
(rak

= cos (0),

RE =1

Lr

where ¢ 1s the angle between y and the span of X' (show with the one regressor, two

observation example).
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e The uncentered R* changes if we add a constant to y, since this changes ¢. An-

other, more common definition measures the contribution of the variables, other

than the constant term, to explamning the variation n y.

o Let1=(1.1.....1)". an -vector. So

M, = .-y W

.:.Il;l ILI.II .ll'll i

M,y just returns the vector of deviations from the mean.



Ordinary Least Squares

The centered R* is defined as

£'E ESS

R =1 —
‘ V My TSS

Supposing that X" contains a column of ones (i.e., there 1s a constant term),

XE=0=Y¢=0
I
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s0 M€ = £. In this case

VMy =pX' MXPB+&E

So
R RSS

© TSS

e Supposing that a column of ones 1s n the space spanned by X (Py1 = 1), then

one can show that 0 < RE < 1.
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e Normality

B=Po+(XX) X

This 1s a linear function of £, which 15 normally distributed. Therefore

B~ N (Bo. (X'X) 'o3)
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e Efficiency (Gauss-Markov theorem)

The OLS estimator 15 a linear estimator, which means that 1t 1s a linear function of the

dependent vanable, y.

B = [(Xx)"']y
= (Cy
It 15 also unbiased, as we proved above. One could consider other weights W 1n place
of the OLS weights. We’ll still insist upon unbiasedness. Consider B = Wy. If the

estimator 15 unbiased
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' E(WXBo+ We)
= WXPo
= Po
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The variance of P 1s

V(B)=WW'a}.

Define

D=W-(XX) X

50

W=D+ (XXX
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Smnce WX =1y, DX =10, s0

V(B) = (D+(X'X)" ') (D+(x'X) 'x") o2

- (Dﬂ“ -(x'x) ) of

So
V(B) = V(p).

This 15 a proof of the Gauss-Markov Theorem.
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Theorem 1 (Gauss-Markov) Under the classical assumptions, the variance of any

linear unbiased estimator minus the variance of the OLS estimator is a positive semidef-
inite matrix.
e [t 1s worth noting that we have not used the normality assumption in any way
to prove the Gauss-Markov theorem, so it 1s valid 1f the errors are not normally

distributed, as long as the other assumptions hold.

Before considering the asymptotic properties of the OLS estimator 1t 1s useful to review

the MLE estimator, since under the assumption of normal errors the two estimators

comncide.



QUESTIONS!

oooooooooooo
Dreamstime.com
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