Lecture 6: Data Cleaning
and Preparation

Alpar Sultan, PhD, Associate professor

Handling Missing Data

In [10]: string_data = pd.Series(['aardvark', 'artichoke', np.nan, 'avocado'])

In [11]: string_data

Out[11]:
0 aardvark 0T . .
1 artichoke In [13]: string_data[@] = None
2 NaN)
3 avocado In [14]: string_data.isnull()
dtype: object Dui::14]:
. . B True
In [12]: string_data.isnull() 1 Fal
Out[12]: alse
0 False Z True
1 False 3 False
: True dtype: bool
3 False yp

dtype: bool

NA handling methods

Argument Description

dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how
much missing data to tolerate.

fillna Fill in missing data with some value or using an interpolation method such as ' ffill' or 'bfill’.
isnull Return boolean values indicating which values are missing/NA.

notnull Negation of isnull.

Filtering Out Missing Data

In [15]: from numpy import nan as NA

In [16]: data = pd.Series([1, NA, 3.5, NA, 7])

In [17]: data.dropna()
Qut[17]:
0 1.0 In [18]: data[data.notnull()]
A 3.5 Qut[18]:
4 7.0 0 1.0
dtype: float64 Vi 3.5
4 7.0

dtype: floatéed

Filling In Missing Data

e Rather than filtering out missing data (and potentially discarding
other data along with it), you may want to fill in the “holes” in any
number of ways. For most purposes, the fillna method is the
workhorse function to use. Calling fillna with a constant replaces
missing values with that value.

Argument Description

value Scalar value or dict-like object to use to fill missing values
method Interpolation; by default ' ffill"' if function called with no other arguments

axis Axis to fill on; default axis=0
inplace Modify the calling object without producing a copy

limit For forward and backward filling, maximum number of consecutive periods to fill

Data Transformation

* Transforming Data Using a Function or Mapping

» data = pd.DataFrame({'food': ['bacon’, 'pulled pork’, 'bacon’,
'Pastrami’, 'corned beef', 'Bacon’, 'pastrami’, 'honey ham', 'nova lox'],
'‘ounces': [4, 3,12,6,7.5,8, 3,5, 6]})

* meat_to_animal = { 'bacon': 'pig', 'pulled pork': 'pig', 'pastrami': 'cow’,
'‘corned beef': 'cow’, 'honey ham': 'pig’, 'nova lox": 'salmon’ }

Replacing Values

* Filling in missing data with the fillna method is a special case of more
general value replacement. As you've already seen, map can be used
to modify a subset of values in an object but replace provides a
simpler and more flexible way to do so

Renaming Axis Indexes

In [66]: data = pd.DataFrame(np.arange(12).reshape((2, 4)),

index=['Ohio', 'Colorado', 'New York'],
columns=["'one', 'two', 'three', 'four'])

In [67]: transform = lambda x: x[:4].upper()

In [68]: data.index.map(transform)

Out[68]: Index(['OHIO'

In [69]: data.index =

In [70]: data

Qut[70]:

one two three
OHIO B 1 P
CoLn 4 g £

NEW 8 9 10

, 'COLO', 'NEW '], dtype='object')

data.index.map(transform)

four
3

-

11

Discretization and Binning

* Continuous data is often discretized or otherwise separated into
“bins” for analysis. Suppose you have data about a group of people in
a study, and you want to group them into discrete age buckets

Python built-in string methods

count Return the number of non-overlapping occurrences of substring in the string.

endswith Returns True if string ends with suffix.

startswith Returns True if string starts with prefix.

join Use string as delimiter for concatenating a sequence of other strings.

index Return position of first character in substring if found in the string; raises ValueError if not found.

find Return position of first character of first occurrence of substring in the string; like index, but returns =1
if not found.

rfind Return position of first character of last occurrence of substring in the string; returns -1 if not found.

replace Replace occurrences of string with another string.

strip, Trim whitespace, including newlines; equivalent to x. strip() (and rstrip, Llstrip, respectively)

rstrip, for each element.

lstrip

split Break string into list of substrings using passed delimiter.

lower Convert alphabet characters to lowercase.

upper Convert alphabet characters to uppercase.

casefold Convert characters to lowercase, and convert any region-specific variable character combinations to a

common comparable form.

ljust, Left justify or right justify, respectively; pad opposite side of string with spaces (or some other fill
rjust character) to return a string with a minimum width.

Regular expression methods

Argument Description

findall Return all non-overlapping matching patterns in a string as a list
finditer Like findall, but returns an iterator

match Match pattern at start of string and optionally segment pattern components into groups; if the pattern
matches, returns a match object, and otherwise None

search Scan string for match to pattern; returning a match object if so; unlike match, the match can be anywhere in
the string as opposed to only at the beginning

split Break string into pieces at each occurrence of pattern

sub, subn Replaceall (sub) or first n occurrences (subn) of pattern in string with replacement expression; use symbols
\1, \2, ... torefer to match group elements in the replacement string

Method Description

cat Concatenate strings element-wise with optional delimiter

contains Return boolean array if each string contains pattern/regex

count Count occurrences of pattern

extract Use a reqular expression with groups to extract one or more strings from a Series of strings; the result
will be a DataFrame with one column per group

endswith Equivalent to x . endswith(pattern) for each element

startswith Equivalent to x.startswith(pattern) for each element

findall Compute list of all occurrences of pattern/regex for each string

get Index into each element (retrieve i-th element)

isalnum Equivalent to built-in str.alnum

isalpha Equivalent to built-<in str.isalpha

isdecimal Equivalent to built-in str.isdecimal

isdigit Equivalent to built-in str.isdigit

islower Equivalent to built-in str.islower

isnumeric Equivalent to built-in str.isnumeric

isupper Equivalent to built-in str.isupper

join Join strings in each element of the Series with passed separator

len Compute length of each string

Llower, upper (Convert cases; equivalent to x. Lower() or x.upper () for each element

Method Description

match Use re .match with the passed regular expression on each element, returning matched groups as list
pad Add whitespace to left, right, or both sides of strings

center Equivalent to pad(side="both")

repeatl Duplicate values (e.g., s.str.repeal(3) isequivalent to x * 3 for each string)

replace Replace occurrences of pattern/regex with some other string

slice Slice each string in the Series

split Split strings on delimiter or reqular expression

strip Trim whitespace from both sides, including newlines

rstrip Trim whitespace on right side

lstrip Trim whitespace on left side

	Slide 1: Lecture 6: Data Cleaning and Preparation
	Slide 2: Handling Missing Data
	Slide 3: NA handling methods
	Slide 4: Filtering Out Missing Data
	Slide 5: Filling In Missing Data
	Slide 6: Data Transformation
	Slide 7: Replacing Values
	Slide 8: Renaming Axis Indexes
	Slide 9: Discretization and Binning
	Slide 10: Python built-in string methods
	Slide 11: Regular expression methods
	Slide 12
	Slide 13

