. Lecture 4: Getting
Started with pandas

Alpar Sultan, PhD
Associate professor

In [1]: import as

Thus, whenever you see pd. in code, it’s referring to pandas. You
may also find it easier to import Series and DataFrame into the local
namespace since they are so frequently used:

In [2]: from import Series, DataFrame

Introduction to pandas Data Structures
Series.

* A Series is a one-dimensional array-like object containing a sequence
of values (of similar types to NumPy types) and an associated array of
data labels, called its index. The simplest Series is formed from only

an array of data:
In [11]: obj = pd.Series([4, 7, -5, 3])

In [12]: obj
Qutfi1z2]:

dtype: inte4

e Using NumPy functions or NumPy-like operations, such as filtering
with a boolean array, scalar multiplication, or applying math
functions, will preserve the index-value link:

In [21]: obj2[obj2 = 8]
Qut[21]:
d

b

C _
dtype: int64

* Another way to think about a Series is as a fixed-length, ordered dict,
as it is a map- ping of index values to data values. It can be used in
many contexts where you might use a dict:

In [24]: 'b" in obj2 In [25]: "e' in obj2
Out[24]: True Out|[25]: False

e Should you have data contained in a Python dict, you can create a
Series from it by passing the dict:

In |26]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5008¢

In [27]: obj3 = pd.Series(sdata)

Data Frame

* A DataFrame represents a rectangular table of data and contains an
ordered collec- tion of columns, each of which can be a different
value type (numeric, string, boolean, etc.).

data = {'state': |['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'l],
'year': [2000, ;33;, ;L:;, 2001, EEE;, 2003],

IDDDI [— s —"T! j"”: La™Ty 2':-“:! - —]}
frame = pd.DataFrame(data)

Data Frame

 When you are assigning lists or arrays to a column, the value’s length
must match the length of the DataFrame. If you assign a Series, its
labels will be realigned exactly to the DataFrame’s index, inserting
missing values in any holes:

In [58]: val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
In [59]: frame2['debt’'] = val

In [60]: frame2

Out| 60]:

year state pop debt
one 200¢C Ohio 1.5 NaN
two 2001 Ohio 1.7 -1.2
three 2002 Dhio 3.6 NaN
four 2001 Nevada 2.4 -1.°%
five 2002 Nevada 2.9

six 2003 Nevada 3.7 NaN

Possible data inputs to Data Frame constructor

2D ndarray A matrix of data, passing optional row and column labels

dict of arrays, lists, or tuples Each sequence becomes a column in the DataFrame; all sequences must be the same length

NumPy structured/record Treated as the “dict of arrays” case

array

dict of Series Each value becomes a column; indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed

dict of dicts Each inner dict becomes a column; keys are unioned to form the row index as in the “dict of
Series” case

List of dicts or Series [ach item becomes a row in the DataFrame; union of dict keys or Series indexes become the
DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the “2D ndarray” case except masked values become NA/missing in the DataFrame result

Index Objects

* pandas’s Index objects are responsible for holding the axis labels and
other metadata (like the axis name or names). Any array or other
sequence of labels you use when constructing a Series or DataFrame
is internally converted to an Index:

In [76]: obj = pd.Series(range(2), index=['a', 'b', 'c'])

In [77]: index = obj.1index

In [78]: index

Out[/8]: Index(["a', 'b', 'c'], dtype='object’)
In [79]: index[1:]

Qut[79]: Index(['D', 'c'], dtype="object')

Index methods and properties

Method Description

append Concatenate with additional Index objects, producing a new Index

difference (ompute set difference as an Index
intersection Compute set intersection

union Compute set union

isin Compute boolean array indicating whether each value is contained in the passed collection
delete Compute new Index with element at index 1 deleted

drop Compute new Index by deleting passed values

insert Compute new Index by inserting element at index 1

is_monotonic Returns True if each element is greater than or equal to the previous element
is_unique Returns True if the Index has no duplicate values

unique Compute the array of unique values in the Index

Reindexing

 An important method on pandas objects is reindex, which means to
create a new object with the data conformed to a new index.

In [91]: obj = pd.Sertes([4.5, 7.2, -5.3, 3.6], index=['d", 'b", "a’, 'C'])

In [93]: obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

Reindex function arguments

Argument Description

index New sequence to use as index. (an be Index instance or any other sequence-like Python data structure. An
Index will be used exactly as is without any copying.
method Interpolation (fill) method; ' FFL11" fills forward, while "bfi 11" fills backward.

fill_value Substitute value to use when introducing missing data by reindexing.
limit When forward- or backfilling, maximum size gap (in number of elements) to fill.
tolerance When forward- or backfilling, maximum size gap (in absolute numeric distance) to fill for inexact matches.

level Maltch simple Index on level of Multilndex; otherwise select subset of.

copy If True, always copy underlying data even if new index is equivalent to old index; if False, do not copy
the data when the indexes are equivalent.

Dropping Entries from an Axis

* Dropping one or more entries from an axis is easy if you already have
an index array or list without those entries. As that can require a bit
of munging and set logic, the drop method will return a new object
with the indicated value or values deleted from an axis:

In [105]: obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])

In [107]: new_obj = obj.drop('c')

Indexing, Selection and Filtering

* Series indexing (obj[...]) works analogously to NumPy array indexing,
except you can use the Series’s index values instead of only integers

* Slicing with labels behaves differently than normal Python slicing in
that the end- point is inclusive

 Setting using these methods modifies the corresponding section of
the Series

* Indexing into a DataFrame is for retrieving one or more columns
either with a single value or sequence

Selection with loc and iloc

* For DataFrame label-indexing on the rows, the special indexing
operators loc and iloc are introduced. They enable you to select a
subset of the rows and columns from a DataFrame with NumPy-like
notation using either axis labels (loc) or integers (iloc).

Indexing options with DataFrame

df[val] Select single column or sequence of columns from the DataFrame; special case
conveniences: boolean array (filter rows), slice (slice rows), or boolean DataFrame
(set values based on some criterion)

df. loc[val] Selects single row or subset of rows from the DataFrame by label
df.loc[:, val] Selects single column or subset of columns by label

df.loc[vall, val2] Select both rows and columns by label

df.1iloc[where] Selects single row or subset of rows from the DataFrame by integer position
df.iloc[:, where] Selects single column or subset of columns by integer position
df.1loc[where_1i, where_j] Select both rows and columns by integer position

df.at[label_1i, label_ j] Select a single scalar value by row and column label

df.iat[i, j] Select a single scalar value by row and column position (integers)
reindex method Select either rows or columns by labels

get_value, set_value methods Select single value by row and column label

Arithmetic and Data Alignment

* An important pandas feature for some applications is the behavior of
arithmetic between objects with different indexes. When you are
adding together objects, if any index pairs are not the same, the
respective index in the result will be the union of the index pairs. This
is similar to an automatic outer join on the index labels

* The internal data alighment introduces missing values in the label

locations that don’t overlap. Missing values will then propagate in
further arithmetic computations.

Flexible arithmetic methods

Method Description

add, radd Methods for addition (+)
sub, rsub Methods for subtraction (-)
div, rdiv Methods for division (/)
floordiv, rfloordiv Methods for floor division (//)
mul, rmul Methods for multiplication (*)

powW, rpow Methods for exponentiation (**)

Function Application and Mapping

* NumPy ufuncs (element-wise array methods) also work with pandas
objects

 Another frequent operation is applying a function on one-
dimensional arrays to each column or row. DataFrame’s apply method
does exactly this

* Many of the most common array statistics (like sum and mean) are
DataFrame methods, so using apply is not necessary.

Sorting and Ranking

e Sorting a dataset by some criterion is another important built-in
operation. To sort lexicographically by row or column index, use the
sort_index method, which returns a new, sorted object:

In [201]: obj = pd.Series(range(4), index=['d', 'a', 'b', "'c'])

In [202]: obj.sort_index()
Qut[z202]:

d 1

b 2

c _

d :

dtype: int64

* Ranking assigns ranks from one through the number of valid data
points in an array. The rank methods for Series and DataFrame are the
place to look; by default rank breaks ties by assigning each group the
mean rank:

In [215]: obj = pd.Series([7, -5, 7, 4, 2, 0, 4])

In [216]: obj.rank()
Qutf[z216]:

dtype: float64

Tie-breaking methods with rank

Method Description

"average' Default: assign the average rank to each entry in the equal group

'min’ Use the minimum rank for the whole group

'max’ Use the maximum rank for the whole group

'first' Assign ranks in the order the values appear in the data

'dense’ Like method="min", but ranks always increase by 1in between groups rather than the number of equal

elements in a group

Axis Indexes with Duplicate Labels

In [222]: obj = pd.Series(range(5), index=['a', 'a', 'b', 'b', 'c'])

In [223]: obj In [224]: obj.index.is_unique
Out[223]: Out[224]: False

@ S In [225]: obj['a']

d ~

o o Out[225]:

b 3 a 0

c 4 d 1

dtype: int64 dtype: int64

In [226]: obj['c']
OQut[226]: 4

Summarizing and Computing Descriptive

Statistics

In [232]: df.sum()

Out[232]:
one 9.25
two -5.80

dtype: floate4

In [233]: df.sum(axis="columns')

Out[233]:
a 1.40
b Z.60
C NaN
d -0.55

dtype: floatrd

In [234]: df.mean(axis="columns', skipna=False)

1.300 Method Description

Out[234]:
a NaN
b

C NaN

level

Axis to reduce over; 0 for DataFrame’s rows and 1 for columns

skipna Exclude missing values; True by default
Reduce grouped by level if the axis is hierarchically indexed (Multilndex)

Descriptive and summary statistics

count Number of non-NA values
describe Compute set of summary statistics for Series or each DataFrame column
min, max Compute minimum and maximum values

argmin, argmax (Compute index locations (integers) at which minimum or maximum value obtained, respectively
idxmin, idxmax Compute index labels at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1
sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values
mad Mean absolute deviation from mean value
prod Product of all values

var Sample variance of values

std Sample standard deviation of values

skew Sample skewness (third moment) of values
kurt Sample kurtosis (fourth moment) of values
cumsum Cumulative sum of values

cummin, cummax Cumulative minimum or maximum of values, respectively
cumprod Cumulative product of values

diff Compute first arithmetic difference (useful for time series)
pct_change Compute percent changes

Unique Values, Value Counts and Membership

In [252]: uniques = obj.unique() In [254]: obj.value_counts()

Out[254]:
In [253]: uniques C 3
Out[253]: array(['c', 'a', 'd', 'b'], dtype=object) 3 3

b 2

d 1

dtype: int64

Method Description

isin Compute boolean array indicating whether each Series value is contained in the passed sequence of
values
match Compute integer indices for each value in an array into another array of distinct values; helpful for data

alignment and join-type operations
unique Compute array of unique values in a Series, returned in the order observed

value_counts Return a Series containing unique values as its index and frequencies as its values, ordered count in
descending order

	Slide 1: Lecture 4: Getting Started with pandas
	Slide 2
	Slide 3: Introduction to pandas Data Structures Series.
	Slide 4
	Slide 5
	Slide 6: Data Frame
	Slide 7: Data Frame
	Slide 8: Possible data inputs to Data Frame constructor
	Slide 9: Index Objects
	Slide 10: Index methods and properties
	Slide 11: Reindexing
	Slide 12: Reindex function arguments
	Slide 13: Dropping Entries from an Axis
	Slide 14: Indexing, Selection and Filtering
	Slide 15: Selection with loc and iloc
	Slide 16: Indexing options with DataFrame
	Slide 17: Arithmetic and Data Alignment
	Slide 18: Flexible arithmetic methods
	Slide 19: Function Application and Mapping
	Slide 20: Sorting and Ranking
	Slide 21
	Slide 22: Tie-breaking methods with rank
	Slide 23: Axis Indexes with Duplicate Labels
	Slide 24: Summarizing and Computing Descriptive Statistics
	Slide 25: Descriptive and summary statistics
	Slide 26: Unique Values, Value Counts and Membership

