Lecture 3: NumPy basics:
Arrays and Vectorized
Computation

Alpar Sultan, PhD
Associate professor

The main areas of functionality

e Fast vectorized array operations for data munging and cleaning, subsetting
and filtering, transformation, and any other kinds of computations

e Common array algorithms like sorting, unique, and set operations
e Efficient descriptive statistics and aggregating/summarizing data

e Data alignment and relational data manipulations for merging and joining
together heterogeneous datasets

e Expressing conditional logic as array expressions instead of loops with if-
elifelse branches

e Group-wise data manipulations (aggregation, transformation, function
application)

The NumPy ndarray: A multidimensional
Array Object

* One of the key features of NumPy is its N-dimensional array object, or
ndarray, which is a fast, flexible container for large datasets in Python.
Arrays enable you to perform mathematical operations on whole
blocks of data using similar syntax to the equivalent operations
between scalar elements

* An ndarray is a generic multidimensional container for homogeneous
data; that is, all of the elements must be the same type. Every array
has a shape, a tuple indicating the size of each dimension, and a
dtype, an object describing the data type of the array.

Creating ndarrays

* The easiest way to create an array is to use the array function. This
accepts any sequence-like object (including other arrays) and
produces a new NumPy array containing the passed data.

In [19]: datal = |6, 7.5, &, 0, 1]
In [20]: arrl = np.array(datal)

In [21]: arrl
Qut[z21]: arrav([6. . 5. 8. , 0., 1. D

* Nested sequences, like a list of equal-length lists, will be converted
into a multidimensional array:

In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]

In [23]: arr2 = np.array(data2)

In [24]: arr2
Out[24]:
array([[1, 2, 3, 4],

[5, 6, 7, 8]])

* Since data2 was a list of lists, the NumPy array arr2 has two
dimensions with shape inferred from the data. We can confirm this by
inspecting the ndim and shape attributes

* Unless explicitly specified np.array tries to infer a good data type for
the array that it creates. The data type is stored in a special dtype
metadata object

* In addition to np.array, there are a number of other functions for
creating new arrays. As examples, zeros and ones create arrays of Os
or 1s, respectively, with a given length or shape. empty creates an
array without initializing its values to any particular value

Array creation functions

array Convert input data (list, tuple, array, or other sequence type) to an ndarray either by inferring a dtype
or explicitly specifying a dtype; copies the input data by default

asarray Convert input to ndarray, but do not copy if the input is already an ndarray

arange Like the built-in range but returns an ndarray instead of a list

ones, Produce an array of all 1s with the given shape and dtype; ones_1ike takes another array and
ones_like produces a ones array of the same shape and dtype

Zeros, Like ones and ones_1like but producing arrays of 0s instead

zeros_Llike

empty, Create new arrays by allocating new memory, but do not populate with any values like ones and
empty_like Zeros

full, Produce an array of the given shape and dtype with all values set to the indicated “fill value”
full_like full_1l1ike takes another array and produces a filled array of the same shape and dtype

eye, identity Create asquare N > N identity matrix (1s on the diagonal and Os elsewhere)

NumPy data types

Type Type code Description

int8, uint8 i1, ul Signed and unsigned 8-bit (1 byte) integer types

int16, uintilé i2, u2 Signed and unsigned 16-bit integer types

int32, uint32 i4, u4 Signed and unsigned 32-bit integer types

int64, uinté4 i8, u8 Signed and unsigned 64-bit integer types

float16 f2 Half-precision floating point

float32 f4a or f Standard single-precision floating point; compatible with C float

floaté4 f8 or d Standard double-precision floating point; compatible with C double and
Python float object

float128 f16 or g Extended-precision floating point

complex64, c8, ci6, Complex numbers represented by two 32, 64, or 128 floats, respectively

complex128, c32

complex256

bool ! Boolean type storing True and False values

object 0 Python object type; a value can be any Python object

string_ 5 Fixed-length ASCII string type (1 byte per character); for example, to create a
string dtype with length 10, use 'S10°

unicode_ U Fixed-length Unicode type (number of bytes platform specific); same

specification semantics as string_ (e.g., 'U18")

* You can explicitly convert or cast an array from one dtype to another
using ndarray’s astype method

* If you have an array of strings representing numbers, you can use
astype to convert them to numeric form

In [46]: int_array = np.arange(10)
In [47]: calibers = np.array([.22, .270, .357, .280, .44, .50], dtype=np.floated)

In [48]: int_array.astype(calibers.dtype)
OQut[48]: array(] 0., 1., 2., 3., 4., 5., 6., , 8., 9.1

Arithmetic with NumPy Arrays

In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]1])

In [52]: arr .
out[52]: * Arrays are important because they
array([[1., 2., 3.1, enable you to express batch

L4 50 6 operations on data without writing
In [53]: arr * arr any for loops. NumPy users call this
Out[53]: vectorization. Any arithmetic
array([[, s Is 0 ti bet |-si

: 17 perations between equal-size arrays

applies the operation element-wise
In [54]: arr - arr
Qut[54]:

array(LL ©., ; I,
[¥ E]])

* Arithmetic operations with scalars propagate the scalar argument to
each element in the array:

In [55]: 1 [/ arr

Out[55]:

array([[1. , 0.° .3333],
Bo.2s , 0.2 , 0.1667]])

LM
-
=

In [56]: arr ** 0.5

Out[56]:

array([[1. , 1.4142, 1.7321],
[2. , 2.2361, 2.4495]])

Mad

 Comparisons between arrays of the same size yield boolean arrays:

In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]1])

In [58]: arr2
Out[58]:
array([[©., 4., 1.1,

In [59]: arr2 = arr
Out[59]:
array([[False, True, False],
[True, False, True]], dtype=bool)

Basic Indexing and Slicing

In

In
Out

In [6
Out[62]

In

Out[6
In [6

In [
Out[

(60]:

(61]:
(61]:

arr = np.arange(10)

dli' I
array([o, 1,

]: arr[5]

5

L it

]: arr[5:8]
: array([5, 6, 7])

]: arr[5:8] = 1

:oarr
: array([o,

-
Ly

2

1,

* With higher dimensional arrays, you have many more options. In a
two-dimensional array, the elements at each index are no longer
scalars but rather one-dimensional arrays:

In [72]): arr2d = np.array([[1, 2, 2], [4, 5, 6], [7, &, 92]])

In [73]: arr2d|[Z]

Out[73]: array([7, &, 9])
In [74]: arr2d[0][2]
Out[74]: 3

In [75]: arr2d[0, 2]
Out[75]: 3

Indexing with slices

* Like one-dimensional objects such as Python lists, ndarrays can be
sliced with the familiar syntax:

In [88]: arr
Out[88]: array([®, 1, 2, 3, 4, 64, 64, 64, 8, 9])

In [89]: arr[1:6]
Out[82]: array([1, 2, 3, 4, 64])

Fancy indexing

* Fancy indexing is a term adopted by NumPy to describe indexing
using integer arrays.

Transposing Arrays and Swapping Axes

* Transposing is a special form of reshaping that similarly returns a view
on the underlying data without copying anything. Arrays have the
transpose method and also the special T attribute.

Universal Functions: Fast Element-Wise Array
-unctions

* A universal function, or ufunc, is a function that performs element-
wise operations on data in ndarrays. You can think of them as fast
vectorized wrappers for simple functions that take one or more scalar
values and produce one or more scalar results.

* Many ufuncs are simple element-wise transformations, like sqrt or
exp:

In [137]: arr = np.arange(10)

In [138]: arr
Out[138]: array([®, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [139]: np.sqrt(arr)

Out[139]:

array([o. , 1. , 1.4142, 1.7321, 2. , 2.2361, 2.4495,
2.6458, 2.8284, 3. b

In [140]: np.exp(arr)

Out[140]:

array([1. . 2.T7T183, 7.3891, 20.0855, 54,5982,
148 .4132, 403.4288, 1096.6332, 2980.958 , 8103.8839])

In [141]: x = np.random.randn(8)

In [142]: v = np.random.randn(8)

In [143]: x

Out[143]:

array([-0.0119, 1.6e048, 1.3272, -0.9193, -1.5491, 0.0222, 0.7584,
-0.6605])

In [144]: vy

Out[144]:

array([©0.8626, -0.01 , ©.85 , 0.6702, 0.853 , -0.9559, -0.0235,
-2.3042])

In [145]: np.maximum(x, v)

Out[145]:

array([©.8626, 1.0048, 1.3272, 0.6702, 0.853 , 0.0222, 0.7584,
-0.6605])

able of unary ufuncs

abs, fabs Compute the absolute value element-wise for integer, floating-point, or complex values

sgrt Compute the square root of each element (equivalent to arr ** 0.5)

square Compute the square of each element (equivalent to arr ** 2)

exp Compute the exponent e* of each element

log, logie, Natural logarithm (base €), log base 10, log base 2, and log(1 + x), respectively

log2, loglp

sign Compute the sign of each element: 1 (positive), 0 (zero), or —1 (negative)

ceil Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that
number)

floor Compute the floor of each element (i.e., the largest integer less than or equal to each element)

rint Round elements to the nearest integer, preserving the dtype

modf Return fractional and integral parts of array as a separate armray

isnan Return boolean array indicating whether each value is NaN (Not a Number)

isfinite, isinf Return boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite,
respectively

cos, cosh, sin, Reqular and hyperbaolic trigonometric functions

sinh, tan, tanh

arccos, arccash, Inverse trigonometric functions
arcsin, arcsinh,
arctan, arctanh

logical_not Compute truth value of not x element-wise (equivalent to ~arr).

Binary universal functions

add

subtract

multiply

divide, floor_divide
power

maximum, fmax

minimum, fmin

mod

copysign

greater, greater_equal,

less, less_equal,
equal, not_equal

logical_and,
logical_or, logical_xor

Add corresponding elements in arrays

Subtract elements in second array from first array

Multiply array elements

Divide or floor divide (truncating the remainder)

Raise elements in first array to powers indicated in second array
Element-wise maximum; fmax ignores NaN

Element-wise minimum; fmin ignores NaN

Element-wise modulus (remainder of division)

Copy sign of values in second argument to values in first argument

Perform element-wise comparison, yielding boolean array (equivalent to infix

operators =, »=, <, <=, ==, l=)

Compute element-wise truth value of logical operation (equivalent to infix operators
& |, *

Array-Oriented Programming with Arrays

e Using NumPy arrays enables you to express many kinds of data
processing tasks as concise array expressions that might otherwise
require writing loops. This practice of replacing explicit loops with
array expressions is commonly referred to as vectorization

Expressing Conditional Logic as Array
Operations

* The numpy.where function is a vectorized version of the ternary
expression x if con dition else y. Suppose we had a boolean array and
two arrays of values.

Mathematical and Statistical Methods

* A set of mathematical functions that compute statistics about an
entire array or about the data along an axis are accessible as methods
of the array class. You can use aggregations (often called reductions)
like sum, mean, and std (standard deviation) either by calling the
array instance method or using the top-level NumPy function

Basic array statistical methods

Method Description

Sum Sum of all the elements in the array or along an axis; zero-length arrays have sum 0

mean Arithmetic mean; zero-length arrays have NaN mean

std, var Standard deviation and variance, respectively, with optional degrees of freedom adjustment (default
denominator n)

min, max Minimum and maximum

argmin, argmax Indices of minimum and maximum elements, respectively
cumsum Cumulative sum of elements starting from 0
cumprod Cumulative product of elements starting from 1

Methods for Boolean Arrays

In [158]: arr =

np.random.randn(1600)

In [151]: (arr > 8).sum() # Number of positive values

Out[191]:

In [192]:

In [193]:
Out[1%3]:

In [1594]:
Out[194]:

42

bools

bools
True

bools
False

= np.array([False, False, True, False])

.any()

.all()

Sorting

In [

In
Out

In

In
Out

[196]:
[196] 2

(197]:

[198]:

[198]:

5]: arr = np.random.randn(c)

arr
array([©.6095, -8.4938,

arr.sort()

arr
array([-0.8469, -0.4938,

1.24 , -B.1357,

-B.1357,

B.6095,

1.43

1.24

, -0.8469])

1.43 1)

Unique and Other Set Logic

* NumPy has some basic set operations for one-dimensional ndarrays.
A commonly used one is np.unique, which returns the sorted unique
values in an array:

In [206]: names = np.array(['Boeb', 'Joe', 'Will', 'Bob', '"Will', 'Joe', 'Joe'])

In [207]: np.unique(names)
Qut[207]: In [210]: sorted(set(names))

array(['Bob', "Joe', 'Will'], Out[210]: ['Bob', 'Joe', 'Will']
dtype="<U4")

In [208]: ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])

In [209]: np.unique(ints)
Qut[2089]: array([1, 2, 3, 4])

Array set operations

Method Description

unique(x) Compute the sorted, unigue elements in x

intersect1ld(x, y) Compute the sorted, common elements in x and y

unionld(x, v) Compute the sorted union of elements

inld(x, y) Compute a boolean array indicating whether each element of x is contained in y

setdiffid(x, v) Set difference, elements in x that are not in y
setxorld(x, v) Set symmetric differences; elements that are in either of the arrays, but not both

Linear Algebra

In [223]: x = np.array([[1., 2., 3.],
In [224]: y = np.array([[6., 23.], [-1,
In [225]: x
out[225]
array([[2., 3.1,
[5., 6.11)
In [226]: ¥y
Out[226]:
array([[6., 23.],
[-1., 7.],
[8., 9.1D
In [227]: x.dot(y)
Out[227]
array([[28., 64.],
[67., 181.]])

In [228]:
Out[228]:
array([[

[

np.dot(x, y)

28., 64.1,

67., 181.11)

x.dot(y) is equivalent to np.dot(x, y):

[4., 5., 6.1])

1,

[

]

g, 91D

Commonly used numpy.linalg functions

diag Return the diagonal (or off-diagonal) elements of a square matrix as a 1D array, or convert a 1D array into a
square matrix with zeros on the off-diagonal

dot Matrix multiplication

trace Compute the sum of the diagonal elements

det Compute the matrix determinant

eig Compute the eigenvalues and eigenvectors of a square matrix
inv Compute the inverse of a square matrix

pinv Compute the Moore-Penrose pseudo-inverse of a matrix

qr Compute the QR decomposition

svd Compute the singular value decomposition (SVD)

solve 3olve the linear system Ax = b for ¥, where A is 3 square matrix
lstsq Compute the least-squares solution to Ax = b

List of numpy.random functions

seed Seed the random number generator

permutation Return a random permutation of a sequence, or return a permuted range

shuffle Randomly permute a sequence in-place

rand Draw samples from a uniform distribution

randint Draw random integers from a given low-to-high range

randn Draw samples from a normal distribution with mean 0 and standard deviation 1 (MATLAB-like interface)
binomial Draw samples from a binomial distribution

normal Draw samples from a normal (Gaussian) distribution

beta Draw samples from a beta distribution

chisquare Draw samples from a chi-square distribution
gamma Draw samples from a gamma distribution
uniform Draw samples from a uniform [0, 1) distribution

	Slide 1: Lecture 3: NumPy basics: Arrays and Vectorized Computation
	Slide 2: The main areas of functionality
	Slide 3: The NumPy ndarray: A multidimensional Array Object
	Slide 4: Creating ndarrays
	Slide 5
	Slide 6
	Slide 7: Array creation functions
	Slide 8: NumPy data types
	Slide 9
	Slide 10: Arithmetic with NumPy Arrays
	Slide 11
	Slide 12
	Slide 13: Basic Indexing and Slicing
	Slide 14
	Slide 15: Indexing with slices
	Slide 16: Fancy indexing
	Slide 17: Universal Functions: Fast Element-Wise Array Functions
	Slide 18
	Slide 19
	Slide 20: Table of unary ufuncs
	Slide 21: Binary universal functions
	Slide 22: Array-Oriented Programming with Arrays
	Slide 23: Expressing Conditional Logic as Array Operations
	Slide 24: Basic array statistical methods
	Slide 25: Methods for Boolean Arrays
	Slide 26: Sorting
	Slide 27: Unique and Other Set Logic
	Slide 28: Array set operations
	Slide 29: Linear Algebra
	Slide 30: Commonly used numpy.linalg functions
	Slide 31: List of numpy.random functions

