
Lecture 2: Built-in Data 
Structures, Functions, and Files

Alpar Sultan, PhD
Associate professor



Tuple

• A tuple is a fixed-length, immutable sequence of Python objects. 
The easiest way to create one is with a comma-separated 
sequence of values:



Tuple

• You can convert any sequence or iterator to a tuple by invoking 
tuple:



Tuple

• once the tuple is created it’s not possible to modify which object 
is stored in each slot

• If an object inside a tuple is mutable, such as a list, you can 
modify it in-place: 



Tuple
• You can concatenate tuples using the + operator to produce 

longer tuples:

• Multiplying a tuple by an integer, as with lists, has the effect of 
concatenating together that many copies of the tuple: 

• Note that the objects themselves are not copied, only the 
references to them. 



Unpacking tuples

• If you try to assign to a tuple-like expression of variables, Python 
will attempt to unpack the value on the righthand side of the 
equals sign: 



Swap
• Using this functionality you can easily swap variable names, a 

task which in many languages might look like:

But, in Python, the 
swap can be done 

like this: 



*rest



List



List

• The list function is frequently used in data processing as a way to 
materialize an iterator or generator expression:



Adding and removing elements



• Elements can be removed by value with remove, which locates the 
first such value and removes it from the last: 



Concatenating and combining lists
• Similar to tuples, adding two lists together with + concatenates 

them:

• If you have a list already defined, you can append multiple 
elements to it using the extend method: 



Sorting



Binary search and maintaining a sorted list 



Slicing



enumerate





sorted

• The sorted function returns a new sorted list from the elements of 
any sequence: 



zip





reserved

Keep in mind that reversed is a generator (to be discussed 
in some more detail later), so it does not create the 
reversed sequence until materialized (e.g., with list or a for 
loop).



dict



• You can check if a dict contains a key using the same syntax used 
for checking whether a list or tuple contains a value: 

• You can delete values either using the del keyword or the pop 
method (which simultaneously returns the value and deletes the 
key):





• The keys and values method give you iterators of the dict’s keys 
and values, respectively. While the key-value pairs are not in any 
particular order, these functions out‐ put the keys and values in 
the same order: 

You can merge one dict into another using the update 
method: 



Creating dicts from sequences



set





List comprehension

• List comprehensions are one of the most-loved Python language 
features. They allow you to concisely form a new list by filtering 
the elements of a collection, transforming the elements passing 
the filter in one concise expression.



Example



Dictionary and set comprehension





Functions



Anonymous (Lambda) Functions



Files





• seek changes the file position to the indicated byte in the file:





Important Python file methods or attributes


	Slide 1: Lecture 2: Built-in Data Structures, Functions, and Files
	Slide 2: Tuple
	Slide 3: Tuple
	Slide 4: Tuple
	Slide 5: Tuple
	Slide 6: Unpacking tuples
	Slide 7: Swap
	Slide 8: *rest
	Slide 9: List
	Slide 10: List
	Slide 11: Adding and removing elements
	Slide 12
	Slide 13: Concatenating and combining lists
	Slide 14: Sorting
	Slide 15: Binary search and maintaining a sorted list 
	Slide 16: Slicing
	Slide 17: enumerate
	Slide 18
	Slide 19: sorted
	Slide 20: zip
	Slide 21
	Slide 22: reserved
	Slide 23: dict
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Creating dicts from sequences
	Slide 28: set
	Slide 29
	Slide 30: List comprehension
	Slide 31: Example
	Slide 32: Dictionary and set comprehension
	Slide 33
	Slide 34: Functions
	Slide 35: Anonymous (Lambda) Functions
	Slide 36: Files
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Important Python file methods or attributes

