Parallel programming / computation
Sultan ALPAR

s.alpar@iitu.edu.kz

TU

Lecture 1
MPI Overview

Outline

MPI Overview & O O .
— one program on several processors
— work and data distribution

Process model and language bindings
— starting several MPI processes MPI_Init()

MPI_Comm_rank()

O

Messages and point-to-point communication
— the MPI processes can communicate Tm‘

Nonblocking communication
— to avoid idle time, deadlocks =\
and serializations =

Slide 2/ 644

Outline

5. The New Fortran Module mpi_f08 4

.)

6. Collective communication f r
— (1) e.g., broadcast

— (2) e.g., nonblocking collectives, neighborhood communic.

7. Error handling

— error handler, codes, and classes

q

LI eje o o o
I..‘.‘.r"‘,.‘.l'.....'..-"

gt gl b !
8. Groups & Communicators, Environmental Management
— (1) MPI_Comm_split, intra- & inter-communicators
— (2) Re-numbering on a cluster, collective communication on
inter-communicators, info object, naming & attribute caching,
implementation information, Sessions Model

9. Virtual topologies

— (1) A multi-dimensional process naming scheme

(2) Neighborhood communication + MPI_BOTTOM
—-(3) Optimization through reordering

... Whereas course is
sorted by beginners /

intermediate / advanced

Handout is
sorted by
content ...

Slide 3/ 644

10.

11.

12.

13.

14.

Outline

One-sided Communication

— Windows, remote memory access (RMA)

— Synchronization

v/

Shared Memory One-sided Communication

— (1) MPI_Comm_split_type & MPI_Win_allocate_shared
Hybrid MPI and MPI shared memory programming

— (2) MPI memory models and synchronization rules

Derived datatypes LLI 11T T T

— (1) transfer any combination of typed data
— (2) advanced features, alignment, resizing

Parallel File 1/10

— (1) Writing and reading a file in parallel
— (2) Fileviews
— (3) Shared Filepointers, Collective 1/O ...

MPI and Threads
— e.g., hybrid MPl and OpenMP,

mpi processes of a communicator

SN LTS
(i T A

t addressed

Do

file, physical view

partitioned point-to-point communication

Slide 4/ 644

15.

16.

17.

18.

19.

Outline

Probe, Persistent Requests, Cancel

Process Creation and Management
— Spawning additional processes (o)

C:
— Singleton MPI_INIT

— Connecting two independent sets of MPI processes

O 0O

Other MPI features [1, 2, 13.1-3, 15, 16-18, 19.3, A, A.2, B]

Best practice

— Parallelization strategies (e.g. Foster’s Design Methodology)
— Performance considerations

— Pitfalls and progress / weak local

Heat example

Summary

Appendix

Slide 5/ 644

Information about MPI

MPI. A Message-Passing Interface Standard, Version 4.0 (June 9, 2021)
(pdf & printed hardcover book [MPI-3.1 only] = online via www.mpi-forum.org)

Marc Snir and William Gropp et al.: MPIl: The Complete Reference, 1998. (outdated)

William Gropp, Ewing Lusk and Anthony Skjellum:

Using MPI: Portable Parallel Programming With the Message-Passing Interface.
MIT Press, 3" edition, Nov. 2014 (336 pages, ISBN 9780262527392), and

William Gropp, Torsten Hoefler, Rajeev Thakur and Ewing Lusk:

Using Advanced MPI: Modern Features of the Message-Passing Interface.

MIT Press, Nov. 2014 (392 pages, ISBN 9780262527637).

Peter S. Pacheco: Parallel Programming with MPI. Morgan Kaufmann Publishers,
1997 (very good introduction, can be used as accompanying text for MPI lectures).

Neil MacDonald, Elspeth Minty, Joel Malard, Tim Harding, Simon Brown, Mario
Antonioletti: Parallel Programming with MPI. Historical MPI course notes from EPCC.
http://www.archer.ac.uk/training/course-material/2014/10/MP1_UCL/Notes/MPP-notes.pdf

All MPI standard documents and errata via www.mpi-forum.org

http://en.wikipedia.org/wiki/Message Passing_Interface (English)
http://de.wikipedia.org/wiki/Message Passing_Interface (German)

Tools: see VI-HPS (Virtual Institute — High Productivity Supercomputing) https://www.vi-hps.org/
Tools Guide: https://www.vi-hps.org/cms/upload/material/general/ToolsGuide.pdf & training events

Python: See MPI for Python (mpi4py.github.io), and MPI for Python documentation
(mpidpy.readthedocs.io), and the Reference (mpi4py.readthedocs.io/en/stable/reference.html)
Outdated API reference: mpi4py.qithub.io/apiref/index.html

Slide 7/ 644

The Message-Passing Programming Paradigm
« Sequential Programming Paradigm

—— memory

pro-
gram

—— runsina Process on a processor

O
Slide 10/ 644

The Message-Passing Programming Paradigm
« Sequential Programming Paradigm

—— memory

pro-
gram

—— runsina Process on a processor

« Message-Passing Programming Paradigm

distributed
memory
o000 O

sub- sub- sub- sub- | 4 parallel
programj [programj |program program processes,

typically each
communication network on a
— dedicated

CPU, core, or
hyperthread

]
Slide 10/ 644

Analogy: Electric Installations in Parallel

MPI sub-program
= work of one electrician
on one floor

MPI process on a dedicated
hardware
= the electrician

data
= the electric installation

MPI communication

= real communication
to guarantee that the wires
are coming at the same
position through the floor

AN

AN

NN

NN

NN

AN

NN

AN

AN

AN

Slide 11/ 644

Parallel hardware architectures

e

shared memory

Socket/CPU

memory-mterface
| | | |
memory

mem. bank mem. bank = mem. bank = mem. bank

Socket/CPU

- memory interface
UMA (uniform memory access)
SMP (symmetric multi-processing)
All cores connected to all memory
banks with same speed

Parallel execution streams on each
core, e.g.,

X[0.. 999]=..on1%core
x[1000 ... 1999] = ... on 2" core
x[2000 ... 2999] = ... on 3" core

O
Slide 12/ 644

Parallel hardware architectures

e

shared memory

Socket/CPU

memory-mterface
| | | |
memory

mem. bank mem. bank = mem. bank = mem. bank

Socket/CPU

- memory interface
UMA (uniform memory access)
SMP (symmetric multi-processing)
All cores connected to all memory
banks with same speed

Parallel execution streams on each
core, e.g.,

X[0.. 999]=..on1%core
x[1000 ... 1999] = ... on 2" core
x[2000 ... 2999] = ... on 3" core

p
Node

{Socket} {Socket; Socket} {Socket}

B E S

1 lhyper transportl i
i | I L

memory memory memory memory

. J

Node

- hyper-transport
ccNUMA (cache-coherent non-uniform
memory access)

-> Shared memory programming is possible

Il #CPUs x memory bandwidth !!

Performance problems:

* Each parallel execution stream should
mainly access the memory of its CPU
- First-touch strategy is needed to
minimize remote memory access

* Threads should be
pinned to the physical sockets

O
Slide 12/ 644

Parallel hardware architectures

e

shared memory

Socket/CPU

memory-mterface
| | | |
memory

mem. bank mem. bank = mem. bank = mem. bank

Socket/CPU

- memory interface
UMA (uniform memory access)
SMP (symmetric multi-processing)
All cores connected to all memory
banks with same speed

Parallel execution streams on each
core, e.g.,

X[0.. 999]=..on1%core
x[1000 ... 1999] = ... on 2" core
x[2000 ... 2999] = ... on 3" core

p
Node

fSocket fSocket 'Socket 'Socket

calealEales

1 lhyper transportl l
i | I L

memory memory memory memory

. J

Node

- hyper-transport
ccNUMA (cache-coherent non-uniform
memory access)
-> Shared memory programming is possible
Il #CPUs x memory bandwidth !!
Performance problems:
* Each parallel execution stream should
mainly access the memory of its CPU
- First-touch strategy is needed to
minimize remote memory access
* Threads should be
pinned to the physical sockets y

v

Shared memory programming with OpenMP

O
Slide 12/ 644

—

shared memory

Socket/CPU

memory-mterface

| | | i"
memory

mem. bank mem. bank = mem. bank = mem. bank

Socket/CPU

- memory interface
UMA (uniform memory access)
SMP (symmetric multi-processing)
All cores connected to all memory
banks with same speed

Parallel execution streams on each

core, e.g.,
X[0.. 999]=..on1%core
x[1000 ... 1999] = ... on 2" core
x[2000 ... 2999] = ... on 3" core

p
Node

fSocket fSocket 'Socket 'Socket

calealEales

1 lhyper transportl l
i | I L

memory memory memory memory

. J

Node

- hyper-transport
ccNUMA (cache-coherent non-uniform
memory access)

-> Shared memory programming is possible

Il #CPUs x memory bandwidth !!

Performance problems:

* Each parallel execution stream should
mainly access the memory of its CPU
- First-touch strategy is needed to
minimize remote memory access

* Threads should be
pinned to the physical sockets

v

Shared memory programming with OpenMP

node-interconnect

Cluster

NUMA (non-uniform memory access)
Il fast access only on its own memory !!
Many programming options:

Shared memory / symmetric multi-
processing inside of each node

distributed memory parallelization on the
node interconnect

Or simply one MPI process on each core

O
Slide 12/ 644

—

shared memory

Socket/CPU

memory-mterface

| | | i"
memory

mem. bank mem. bank = mem. bank = mem. bank

Socket/CPU

- memory interface
UMA (uniform memory access)
SMP (symmetric multi-processing)
All cores connected to all memory
banks with same speed

Parallel execution streams on each

core, e.g.,
X[0.. 999]=..on1%core
x[1000 ... 1999] = ... on 2" core
x[2000 ... 2999] = ... on 3" core

p
Node

fSocket fSocket 'Socket 'Socket

calealEales

1 lhyper transportl l
i | I L

memory memory memory memory

. J

Node

- hyper-transport
ccNUMA (cache-coherent non-uniform
memory access)

-> Shared memory programming is possible

Il #CPUs x memory bandwidth !!

Performance problems:

* Each parallel execution stream should
mainly access the memory of its CPU
- First-touch strategy is needed to
minimize remote memory access

* Threads should be
pinned to the physical sockets

v

Shared memory programming with OpenMP

node-interconnect

Cluster

NUMA (non-uniform memory access)
Il fast access only on its own memory !!
Many programming options:

Shared memory / symmetric multi-
processing inside of each node

distributed memory parallelization on the
node interconnect

Or simply one MPI process on each core

A'4

MPI works everywhere

(]
Slide 12/ 644

Each processor in a message passing program runs a sub-program:

The Message-Passing Programming Paradigm

written in a conventional sequential language, e.g., C, Fortran, or Python

typically the same on each processor (SPMD),

the variables of each sub-program have
* the same name

* but different locations (distributed memory) and different data!

* i.e, all variables are private

communicate via special send & receive routines (message passing)

sub-
program

QO O

communication network

F

O

O
Slide 13/ 644

The Message-Passing Programming Paradigm

« Each processor in a message passing program runs a sub-program:
— written in a conventional sequential language, e.g., C, Fortran, or Python
— typically the same on each processor (SPMD),

— the variables of each sub-program have

* the same name
* but different locations (distributed memory) and different data!

* i.e, all variables are private
— communicate via special send & receive routines (message passing)

Q 0. O

sub- Caution

program completely
different model
compared to

. OpenMP

. Python with
concurrent futures

* pthreads, shmem

communication network
S

]
Slide 13/ 644

Data and Work Distribution

the value of myrank is returned by special library routine

the system of size processes is started by special MPI initialization
program (mpirun or mpiexec)

all distribution decisions are based on myrank
l.e., which process works on which data

myrank=0\ /myrank=1\ /myrank=2
data data data
00000

sub- sub- sub- sub-
program program program program

communication n;w
F

Slide 14/ 644

What i1s SPMD?

Single Program, Multiple Data
Same (sub-)program runs on each processor

MPI allows also MPMD, i.e., Multiple Program, ...

but some vendors may be restricted to SPMD
MPMD can be emulated with SPMD

Slide 15/ 644

Emulation of Multiple Program (MPMD), Example

* main(int argc, char **argv)
if (myrank < /* process should run the ocean model */)

ocean(/* arguments */);

lelse{
weather(/* arguments */);
}
}
+ PROGRAM

IF (myrank < ...) THEN !! process should run the ocean model
CALL ocean (some arguments)

ELSE
CALL weather (some arguments)

ENDIF

END

 if(myrank <....): # process should run the ocean model
ocean(...)
else:
weather(...)

O
Slide 16/ 644

Emulation of Multiple Program (MPMD), Example

main(int argc, char **argv)
if (myrank < /* process should run the ocean model */)

ocean(/* arguments */);

lelse{
weather(/* arguments */);
}
}
+ PROGRAM

IF (myrank < ...) THEN !! process should run the ocean model
CALL ocean (some arguments)

ELSE
CALL weather (some arguments)

ENDIF

END

if (myrank <): # process should run the ocean model
ocean(...)
else:
weather(...)

Slide 16/ 644

first-example.c

Slide 17

O

#include <stdio.h> first-example.c

#include <mpi.h>

int main (int argc, char *argv([])

{

}

MPI Init(&argc, &argv);

MPI Finalize();
MPI course - Chap. 1 Overview

Slide 17

O

#include <stdio.h> first-example.c

#include <mpi.h>

int main (int argc, char *argv([])

{

}

Compiled, e.g., with: mpicc first-example.c
Started, e.g., with: mpiexec -n 4 ./a.out
Then, this code is running 4 times in parallel !

MPI Init(&argc, &argv);

MPI Finalize();
MPI course - Chap. 1 Overview

Slide 17

O

#%HClUde <St§1io -h> firSt'example-C Compiled, e.g., with: mpicc first-example.c
#include <mpi.h> Started, e.g., with: mpiexec -n 4 ./a.out
?nt main(int argc, char *argvll]) Then, this code is running 4 times in parallel !

int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv); Now, each process knows who it is:
MPI Comm rank (MPI_COMM WORLD, &my rank); number my_rank out of num_procs processes
MPI Comm size (MPI_COMM WORLD, &num procs) ;

MPI_Finalize ()

Slide17 O

} MPI course - Chap. 1 Overview

#%HClUde <St§1io'h> firSt'example-C Compiled, e.g., with: mpicc first-example.c
#include <mpi.h> Started, e.g., with: mpiexec -n 4 ./a.out

int main(int argc, char *argv[]) Then, this code is running 4 times in parallel !
{ int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv); Now, each process knows who it is:
MPI Comm rank (MPI_COMM WORLD, &my rank); number my_rank out of num_procs processes
MPI Comm size (MPI_COMM WORLD, &num procs) ;

MPI_Finalize () g
Slide 17

} MPI course - Chap. 1 Overview

#%HClUde <St§1io -h> firSt'example-C Compiled, e.g., with: mpicc first-example.c
#include <mpi.h> Started, e.g., with: mpiexec -n 4 ./a.out
int main(int argc, char *argvl]) Then, this code is running 4 times in parallel !

{ int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv); Now, each process knows who it is:
MPI Comm rank (MPI_COMM WORLD, &my rank); number my_rank out of num_procs processes)
MPI Comm size (MPI_COMM WORLD, &num procs) ;

if (my_rank == 0) reading the application data n from stdin only
{ printf ("Enter the number of elements (n): \n"); by process 0
scanf ("%d", &n) ;

}

Enter the number of elements (n): input/output
100

MPI Finalize();
} MPI course - Chap. 1 Overview

Slide17 O

#%DClUde <St§1io -h> firSt'example-C Compiled, e.g., with: mpicc first-example.c
#include <mpi.h> Started, e.g., with: mpiexec -n 4 ./a.out
int main(int argc, char *argvl]) Then, this code is running 4 times in parallel !

{ int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv); Now, each process knows who it is:

MPI Comm rank (MPI_COMM WORLD, &my rank); number my_rank out of num_procs processes)

MPI Comm size (MPI_COMM WORLD, &num procs) ;

if (my_rank == 0) reading the application data n from stdin only

{ printf ("Enter the number of elements (n): \n"); by process 0]
scanf ("sd", &n); process 0 is sender, all other .

} processes are receivers broadcasting the content of variable n in process 0

MPI Bcast(&n, 1, MPI INT, 0, MPI COMM WORLD) ; into variables n in all other processes)

Enter the number of elements (n): input/output
100

MPI Finalize();
} MPI course - Chap. 1 Overview

Slide17 O

f#include <stdio.h> first-example.C (Compiled, e.g., with: mpicc first-example.c
#include <mpi.h> Started, e.g., with: mpiexec -n 4 ./a.out

int main(int argc, char *argv[]) Then, this code is running 4 times in parallel !
{ int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv); Now, each process knows who it is:
MPI Comm rank (MPI_COMM WORLD, &my rank); number my_rank out of num_procs processes)
MPI Comm size (MPI_COMM WORLD, &num procs) ;

if (my_rank == 0) reading the application data n from stdin only
{ printf ("Enter the number of elements (n): \n"); by process 0

scanf ("%d", &n) ; process 0 is sender, all other \
} processes are receivers %broadcasting the content of variable n in process 0

MPI Bcast(&n, 1, MPI INT, 0, MPI COMM WORLD) ; into variables n in all other processes

result = 1.0 * my rank * n; }%doingsomeapplication work in each process

—/

Enter the number of elements (n): input/output
100

MPI Finalize();
} MPI course - Chap. 1 Overview

Slide17 O

#include <stdio.h> firSt'example-C Compiled, e.g., with: mpicc first-example.c

#include <mpi.h>

Started, e.g., with: mpiexec -n 4 ./a.out

int main({int argc, char *argv(]) Then, this code is running 4 times in parallel !

{

}

int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, &num procs) ;

Now, each process knows who it is:
number my_rank out of num_procs processes

if (my rank == 0)

{ printf ("Enter the number of elements (n):

reading the application data n from stdin only
\n") ; by process 0

}

scanf ("%d", &n) ; iprocess 0 is sender, all other]

MPI_Bcast(sn, 1, MPI INT, 0, MPI COMM WORLD) ;

. - - -)
processes are receivers <[broadcast|ng the content of variable n in process O

into variables n in all other processes

result = 1.0 * my rank * n; __é[doing some application work in each process

printf ("I am process %$i out of %1 handling |the %ith part of n=%i elements, result=%f\n",

my rank, num procs,

MPI Finalize();

my rank, n, result);
Enter the number of elements (n): input/output
100

| am process 0 out of 4 handling the Oth part of n=100 elements, result=0.0
| am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
| am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
| am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0

Slide17 O

MPI course - Chap. 1 Overview

#include <stdio.h> firSt'example-C Compiled, e.g., with: mpicc first-example.c

#include <mpi.h>
int main (int argc, char *argv([])

{

}

Started, e.g., with: mpiexec -n 4 ./a.out
Then, this code is running 4 times in parallel !

int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, &num procs) ;

Now, each process knows who it is:
number my_rank out of num_procs processes

if (my rank == 0)

{ printf ("Enter the number of elements (n):

reading the application data n from stdin only
\n") ; by process 0

}

scanf ("5d", &n) ; iprocess 0 is sender, all other]

processes are receivers broadcasting the content of variable n in process 0]
MPI Bcast(&n, 1, MPI INT, 0, MPI COMM WORLD) ;

into variables n in all other processes

result = 1.0 * my rank * n; ‘_é.;{doing some application work in each process

—/

printf ("I am process %i out of %i handling |the %ith part of n=%i elements, result=%f\n",

my rank, num procs, my rank, n, result);
if (my rank '= 0
((my_) send to process 0 <[sending some results from]
MPI_ Send(&result,1,MPI DOUBLE,O0,99,MPI COMM WORLD) ; all processes (except 0) to process 0
}
else

MPI Finalize();
MPI course - Chap. 1 Overview

Enter the number of elements (n): input/output
100

| am process 0 out of 4 handling the Oth part of n=100 elements, result=0.0

| am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
| am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
| am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0

Slide17 O

#include <stdio.h> firSt'example-C Compiled, e.g., with: mpicc first-example.c
Started, e.g., with: mpiexec -n 4
Then, this code is running 4 times in parallel !

#include <mpi.h>
int main (int argc, char *argv([])

{

}

./a.out

int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, &num procs) ;

Now, each process knows who it is:
number my_rank out of num_procs processes

if (my rank == 0)

{ printf ("Enter the number of elements (n):

reading the application data n from stdin only
\n") ; by process 0

}

scanf ("5d", &n) ; iprocess 0 is sender, all other]

MPI_Bcast(sn, 1, MPI INT, 0, MPI COMM WORLD) ;

processes are receivers broadcasting the content of variable n in process 0
into variables n in all other processes

result = 1.0 * my rank * n;

‘_é.;{doing some application work in each process

—/

printf ("I am process %i out of %i handling |the %ith part of n=%i elements, result=%f\n",

my rank, num procs, my rank, n, result) ;
if (my rank '= 0
{ (my_) send to process 0 sending some results from
MPI_ Send(&result,1,MPI DOUBLE,O0,99,MPI COMM WORLD) ; all processes (except 0) to process 0

}

else <[Process 0: receiving all these messages and, e.g., printing them]

MPI Finalize();
MPI course - Chap. 1 Overview

Enter the number of elements (n):
100

| am process 0 out of 4 handling the Oth part of n=100 elements, result=0.0

| am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
| am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
| am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0

input/output

well sorted output
from process 0
Slide17 O

#include <stdio.h>
#include <mpi.h>
int main(int argc,

{

}

first-example.c

char *argv([])

Compiled, e.g., with: mpicc first-example.c
Started, e.g., with:

Then, this code is running 4 times in parallel !

mpiexec -n 4 ./a.out

int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, &num procs) ;

Now, each process knows who it is:
number my_rank out of num_procs processes

if (my rank 0)
{ printf ("Enter the number of elements

(n) :

reading the application data n from stdin only
\n") ; by process 0

scanf ("%d", &n) ;

process 0 is sender, all other
} processes are receivers

MPI Bcast (é&n,

1, MPT INT, 0, MPI COMM WORLD);

broadcasting the content of variable n in process 0]
into variables n in all other processes

result = 1.0 * my rank * n;

‘_é.;{doing some application work in each process

—/

printf ("I am process %i out of %i handling |the %ith part of n=%i elements, result=%f\n",

my rank, num procs,

my rank, n, result);

if (my_ rank !'= 0)
{

}

send to process 0 <[sending some results from]
MPI_ Send(&result,1,MPI DOUBLE,O0,99,MPI COMM WORLD) ; all processes (except 0) to process 0

else <[Process 0: receiving all these messages and, e.g., printing them]

{ int rank;
printf ("I'm proc 0: My own result is St

\n", result) ;

}

MPI Finalize();
MPI course - Chap. 1 Overview

Enter the number of elements (n):
100

| am process 0 out of 4 handling the Oth part of n=100 elements, result=0.0

| am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
| am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
| am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0
I'm proc 0: My own result is 0.0

input/output

well sorted output
from process 0
Slide 17

O

#include <stdio.h>
#include <mpi.h>
int main(int argc,

{

}

first-example.c

char *argv([])

Compiled, e.g., with: mpicc first-example.c
Started, e.g., with:
Then, this code is running 4 times in parallel !

mpiexec -n 4 ./a.out

int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, &num procs) ;

Now, each process knows who it is:
number my_rank out of num_procs processes

if (my rank 0)
{ printf ("Enter the number of elements

(n) :

reading the application data n from stdin only
\n") ; by process 0

scanf ("%d", &n) ;

process 0 is sender, all other
} processes are receivers

MPI Bcast (é&n,

1, MPT INT, 0, MPI COMM WORLD);

broadcasting the content of variable n in process 0]
into variables n in all other processes

result = 1.0 * my rank * n;

‘_é.;{doing some application work in each process

—/

printf ("I am process %i out of %i handling |the %ith part of n=%i elements, result=%f\n",

my rank, num procs,

my rank, n, result);

if (my_ rank !'= 0)
{

}

send to process 0 <[sending some results from]
MPI_ Send(&result,1,MPI DOUBLE,O0,99,MPI COMM WORLD) ; all processes (except 0) to process 0

else <[Process 0: receiving all these messages and, e.g., printing them]

{ int rank;
printf ("I'm proc 0: My own result is St
for (rank=1l; rank<num procs; rank++)

\n", result) ;

{

}
}

MPI Finalize();
MPI course - Chap. 1 Overview

Enter the number of elements (n):
100

| am process 0 out of 4 handling the Oth part of n=100 elements, result=0.0

| am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
| am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
| am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0
I'm proc 0: My own result is 0.0

input/output

well sorted output
from process 0
Slide 17

O

#include <stdio.h>
#include <mpi.h>
int main(int argc,

{

}

first-example.c

char *argv([])

Compiled, e.g., with: mpicc first-example.c
Started, e.g., with:
Then, this code is running 4 times in parallel !

mpiexec -n 4 ./a.out

int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, &num procs) ;

Now, each process knows who it is:
number my_rank out of num_procs processes

if (my rank 0)
{ printf ("Enter the number of elements

(n) :

reading the application data n from stdin only
\n") ; by process 0

scanf ("%d", &n) ;

process 0 is sender, all other
} processes are receivers

MPI Bcast (é&n,

1, MPT INT, 0, MPI COMM WORLD);

broadcasting the content of variable n in process 0]
into variables n in all other processes

result = 1.0 * my rank * n;

‘_é,;{doing some application work in each process

—/

printf ("I am process %i out of %i handling |the %ith part of n=%i elements, result=%f\n",

my rank, num procs,

my rank, n, result);

if (my_ rank !'= 0)
{

}

send to process 0 <[sending some results from]
MPI_ Send(&result,1,MPI DOUBLE,O0,99,MPI COMM WORLD) ; all processes (except 0) to process 0

else <[Process 0: receiving all these messages and, e.g., printing them]

{ int rank;
printf ("I'm proc 0: My own result is St
for (rank=1l; rank<num procs; rank++)

receiving the message from process rank]

\n", result

{
MPI_Recv (sresult,1,MPI DOUBLE, rank; 99,

MPI COMM WORLD, MPI STATUS IGNORE) ;

}
}

MPI Finalize();
MPI course - Chap. 1 Overview

Enter the number of elements (n):
100

| am process 0 out of 4 handling the Oth part of n=100 elements, result=0.0

| am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
| am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
| am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0
I'm proc 0: My own result is 0.0

input/output

well sorted output
from process 0
Slide 17

O

#include <stdio.h>
#include <mpi.h>
int main(int argc,

{

}

first-example.c

char *argv([])

Compiled, e.g., with: mpicc first-example.c
Started, e.g., with:
Then, this code is running 4 times in parallel !

mpiexec -n 4 ./a.out

int n; double result;— application-related data]
int my rank, num_procs; = MPI-related data]

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, &num procs) ;

Now, each process knows who it is:
number my_rank out of num_procs processes

if (my rank 0)
{ printf ("Enter the number of elements

(n) :

reading the application data n from stdin only
\n") ; by process 0

scanf ("%d", &n) ;

process 0 is sender, all other
} processes are receivers

MPI Bcast (é&n,

1, MPT INT, 0, MPI COMM WORLD);

broadcasting the content of variable n in process 0]
into variables n in all other processes

result = 1.0 * my rank * n;

‘_é,;{doing some application work in each process

—/

printf ("I am process %i out of %i handling |the %ith part of n=%i elements, result=%f\n",

my rank, num procs,

my rank, n, result);

if (my_ rank !'= 0)
{

}

send to process 0 <[sending some results from]
MPI_ Send(&result,1,MPI DOUBLE,O0,99,MPI COMM WORLD) ; all processes (except 0) to process 0

else <[Process 0: receiving all these messages and, e.g., printing them]

{ int rank;
printf ("I'm proc 0: My own result is St
for (rank=1l; rank<num procs; rank++)

receiving the message from process rank]

\n", result

{
MPI_Recv (sresult,1,MPI DOUBLE, rank; 99,

MPI COMM WORLD, MPI STATUS IGNORE);
printf ("I'm proc 0: received result of
process %i is %f \n", rank, result);

}

}

MPI Finalize();
MPI course - Chap. 1 Overview

Enter the number of elements (n):
100

| am process 0 out of 4 handling the Oth part of n=100 elements, result=0.0

| am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
| am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
| am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0
I'm proc 0: My own result is 0.0

I'm proc O: received result of process 1 is 100.0
I'm proc O: received result of process 2 is 200.0
I'm proc 0: received result of process 3 is 300.0

input/output

well sorted output
from process 0
Slide 17

part of the course
preparation

Exercise 1
v

Already done as
Please run this first example on your exercise system:

J
cd MPl/tasks/C/Chl LB o vPitasks/F_30/Ch1
cd MPIl/tasks/PY/Chl & Basis for the entire course |

Initialize your compile and MPI environment, /Caution: OpenMPl is an MP!

- library, whereas OpenMP is a
e.g., module load gnu openmpi (on my system ©) L sh{'/;lred memoryppamTel

programming model

° s -1 > first-example.c or first-example_30.f90 or first-example.py

ompicc first-example.c mpif90 first-example 30.f90
and mpirun -np 4 ./a.out
mpirun -np 4 python3 first-example.py (no compilation, parallel start of the interpreter)
. (or equivalent commands on your system)

* As input, you may choose: 100 (2> output should be similar to previous slide)
CAUTION: The previous printout “Enter the number” may be missing. Do not wait! Just type 100 [RETURN] - it should work!

* Look at the sequence of the output lines for several runs with 4 to 10
processes

That’s all, done.

]
Slide 18/ 644

Exercise 1 — Solution + Questions

mpifo0 first-example 30.f90
mpirun -np 6 ./a.out

Enter the number of elements (n):
100

| am process 0 out of 6 handling the
| am process 1 outof 6 handling the
| am process 2 out of 6 handling the
| am process 3 outof 6 handling the
| am process 4 out of 6 handling the
| am process 5 out of 6 handling the
I'm proc 0: My own resultis 0.00
I'm proc 0: received result of process
I'm proc O: received result of process
I'm proc O: received result of process
I'm proc O: received result of process
I'm proc O: received result of process

Oth part of n= 100 elements, result=
1th part of n= 100 elements, result=
2th part of n= 100 elements, result=
3th part of n= 100 elements, result=
4th part of n= 100 elements, result=
5th part of n= 100 elements, result=

1lis
21s
3is
4is
5is

100.00
200.00
300.00
400.00
500.00

0.00
100.00
200.00
300.00
400.00
500.00

O
Slide 20/ 644

Exercise 1 — Solution + Questions

mpifo0 first-example 30.f90
mpirun -np 6 ./a.out

Enter the number of elements (n):
100

| am process 0 out of 6 handling the Oth part of n= 100 elements, result=
| am process 1 outof 6 handling the 1th part of n= 100 elements, result=
| am process 2 out of 6 handling the 2th part of n= 100 elements, result=
| am process 3 out of 6 handling the 3th part of n= 100 elements, result=
| am process 4 out of 6 handling the 4th part of n= 100 elements, result=
| am process 5 out of 6 handling the 5th part of n= 100 elements, result=

I'm proc 0: My own resultis 0.00

I'm proc 0: received result of process
I'm proc O: received result of process
I'm proc O: received result of process
I'm proc O: received result of process
I'm proc O: received result of process

1lis
21s
3is
4is
5is

100.00
200.00
300.00
400.00
500.00

Normally, you'll never
see this perfect output !

0.00
100.00
200.00
300.00
400.00
500.00

O
Slide 20/ 644

Exercise 1 — Solution + Questions

mpifo0 first-example 30.f90
mpirun -np 6 ./a.out

Enter the number of elements (n):
100

| am process 0 out of 6 handling the Oth part of n= 100 elements, result=
| am process 1 outof 6 handling the 1th part of n= 100 elements, result=
| am process 2 out of 6 handling the 2th part of n= 100 elements, result=
| am process 3 out of 6 handling the 3th part of n= 100 elements, result=
| am process 4 out of 6 handling the 4th part of n= 100 elements, result=
| am process 5 out of 6 handling the 5th part of n= 100 elements, result=

I'm proc 0: My own resultis 0.00

I'm proc 0: received result of process
I'm proc O: received result of process
I'm proc O: received result of process
I'm proc O: received result of process
I'm proc O: received result of process

1lis
21s
3is
4is
5is

100.00
200.00
300.00
400.00
500.00

Normally, you'll never
see this perfect output !

I?

0.00
100.00
200.00
300.00
400.00
500.00

]
Slide 20/ 644

Exercise 1 — Solution + Answers

mpif90 first-example_30.f90
mpirun -np 6 ./a.out

Enter the number of elements (n):
100

| am process 4 outof 6 handling the

| am process 0 out of 6 handling the Oth part of n= 100 elements, result=

I'm proc 0: My own resultis 0.00

| am process 2 outof 6 handling the
| am process 1 outof 6 handling the
I'm proc O: received result of process
I'm proc O: received result of process
I'm proc O: received result of process
| am process 3 outof 6 handling the
I'm proc O: received result of process
| am process 5 outof 6 handling the
I'm proc 0: received result of process

4th part of n= 100 elements,

2th part of n= 100 elements,
1th part of n= 100 elements,
lis 100.00
2is 200.00
3is 300.00
3th part of n= 100 elements,
4is 400.00
5th part of n= 100 elements,
5is 500.00

result=

result=
result=

result=

result=

400.00
0.00

200.00
100.00

300.00

500.00

O
Slide 21/ 644

Exercise 1 — Solution + Answers

mpif90 first-example_30.f90
mpirun -np 6 ./a.out

Enter the number of elements (n):
100

| am process 4 outof 6 handling the

| am process 0 out of 6 handling the Oth part of n= 100 elements, result=

I'm proc O0: My own resultis 0.00

| am process 2 outof 6 handling the
| am process 1 outof 6 handling the
I'm proc O: received result of process
I'm proc O: received result of process
I'm proc O: received result of process
| am process 3 outof 6 handling the
I'm proc O: received result of process
| am process 5 outof 6 handling the
I'm proc O: received result of process

General rule:

The output of each process
Is in the well defined sequence of its sub-program,
see, e.g., the bold text from process 0!

4th part of n= 100 elements,

2th part of n= 100 elements,
1th part of n= 100 elements,
lis 100.00
2is 200.00
3is 300.00
3th part of n= 100 elements,
4is 400.00
5th part of n= 100 elements,
5is 500.00

result=

result=
result=

result=

result=

400.00

0.00

200.00
100.00

300.00

500.00

O
Slide 21/ 644

Exercise 1 — Solution + Answers

mpif90 first-example_30.f90 General rule:

mpirun -np 6 ./a.out The output of each process
Is in the well defined sequence of its sub-program,

Enter the number of elements (n): see, e.g., the bold text from process 0!

100
| am process 4 outof 6 handlingthe 4th partof n= 100 elements, result= 400.00
| am process 0 out of 6 handling the Oth part of n= 100 elements, result= 0.00

I'm proc O0: My own resultis 0.00

| am process 2 outof 6 handlingthe 2th partof n= 100 elements, result=200.00
| am process 1 outof 6 handlingthe 1th partof n= 100 elements, result="100.00
I'm proc O: received result of process 1is 100.00

I'm proc O: received result of process 2is 200.00

I'm proc O: received result of process 3is 300.00

| am process 3 outof 6 handlingthe 3thpartof n= 100 elements, result="300.00
I'm proc O: received result of process 4is 400.00

| am process 5 outof 6 handlingthe 5th partof n= 100 elements, result=500.00
I'm proc O: received result of process 5is 500.00

The output from different processes can be intermixed in any sequence!
Most MPI libraries try to not intersect output lines ©

(]
Slide 21/ 644

Access

« A sub-program needs to be connected to a message passing system

* A message passing system is similar to:
— mail box
— phone line
— fax machine
— etc.

« MPI:
— sub-program must be linked with an MPI library
— sub-program must use include file of this MPI library

— the total program (i.e., all sub-programs of the program)
must be started with the MPI startup tool

O
Slide 22/ 644

Access

« A sub-program needs to be connected to a message passing system

* A message passing system is similar to:
— mail box
— phone line
— fax machine
— etc.

« MPI:
— sub-program must be linked with an MPI library
— sub-program must use include file of this MPI library

— the total program (i.e., all sub-programs of the program)
must be started with the MPI startup tool

(]
Slide 22/ 644

Messages

sub-
program

O

communication network
N

 Messages are packets of data moving between sub-programs
* Necessary information for the message passing system:

— sending process — receiving process } l.e., the ranks
— source location — destination location
— source data type — destination data type]

— source data size — destination buffer size

O
Slide 23/ 644

Messages

sub-
program

O

communication network
N

 Messages are packets of data moving between sub-programs
* Necessary information for the message passing system:

— sending process — receiving process } l.e., the ranks
— source location — destination location

— source data type — destination data type]

— source data size — destination buffer size

basic or derived
datatypes

]
Slide 23/ 644

Addressing

« Messages need to have addresses to be sent to.

« Addresses are similar to:
— mail addresses
— phone number
— fax number
— etc.

« MPI: addresses are ranks of the MPI processes (sub-programs)

Slide 24/ 644

Receiving

« All messages must be received.

Slide 25/ 644

Point-to-Point Communication

« Simplest form of message passing.
« One process sends a message to another.

« Different types of point-to-point communication:
— synchronous send
— buffered = asynchronous send

Slide 26/ 644

Synchronous Sends
The sender gets an information that the message is received
Analogue to the beep or okay-sheet of a fax.

L

13

==

ke

Slide 27/ 644

Buffered = Asynchronous Sends

Only know when the message has left.
i b @
/////.

Slide 28/ 644

Blocking Operations

Operations are activities, such as
— sending (a message)
— receiving (a message)

Some operations may block until another process acts:
— synchronous send operation blocks until receive is posted,;
— receive operation blocks until message was sent.

Relates to the completion of an operation.

Blocking subroutine returns only when the operation has completed.

Slide 29/ 644

Nonblocking Operations
Nonblocking operations consist of

A nonblocking procedure call: it returns immediately and allows the
sub-program to perform other work

At some later time the sub-program must test or wait for the completion
of the nonblocking operation

0’ T

nonblocklng synchronous send m

Slide 30/ 644

Non-Blocking Operations (cont‘d) ‘.Li

All nonblocking procedures must have a matching wait (or test) procedure.

(Some system or application resources can be freed only when the
nonblocking operation is completed.)

A nonblocking procedure immediately followed by a matching wait
IS equivalent to a blocking procedure.

Nonblocking procedures are not the same as sequential subroutine calls:

— the operation may continue while the application executes the next
statements!

Slide 31/ 644

Interrupt: Example & Exercise 2

« Before we further go through the MPI chapter overview on
— Collective Communication
— Parallel file I1/O

« Lets look at halo communication

* plus a short exercise 2

Slide 32/ 644

Example: Domain decomposition — serial

* Xhew (I,j) =f (Xold(i'lij)1 Xold (i,j), Xold (i+1,j), Xold (i’j'l)’ Xold (i’j+1))

7|

X (1,))

—" To calculate Xhew(l:]), these additional
elements of x,4 are needed
based on the +1 in the formula

serial

Slide 33/ 644

Example: Domain decomposition — parallel

* Xhew (I,j) =f (Xold(i'lij)1 Xold (i,j), Xold (i+1,j), Xold (i’j'l)’ Xold (i’j+1))

L] &]
/ - X (i.))
- Z]
x (i)~
[] []
i Communication AIL
I | I |
_\ N | ||
X (I’J) 9' R\l
X (i,])
parallel
X,q Calculated / A copy of that data, stored in
within this sub-domain an additional “halo cell” for that sub-domain

O
Slide 34/ 644

Example: Domain decomposition — parallel

Xnew (I,j) =f (Xold(i'lij)1 Xold (i,j), Xold (i+1,j), Xold (i’j'l)’ Xold (i’j+1))

Lzl &]
/ — X (1.])
X(I,j) [_é|
[] []
i Communication AIL
I | I
EN j i i
X (1,]) SN
-\
X (1,])

(Important:

In each direction,

all halo data should be sent
together in one message
= best bandwidth

Compared to single word
messages with, e.g., only

8 bytes / 1 ys = 8 MB/s ®

X,q Calculated /
within this sub-domain

_

~

J

A copy of that data, stored in
an additional “halo cell” for that sub-domain

parallel

]
Slide 34/ 644

——

Communication: Send inner data —-. into halo storage

Boundary conditions [The data mesh X, o]

One iteration in the
serial code;
= function(X,4)

[The data mesh x4 F

function(X,1q) 2 Xnew
— Xnew

— Xold = Xnew

Boundary conditions

O
Slide 35/ 644

——

Communication: Send inner data —-. into halo storage

Boundary conditions [The data mesh X, o]

One iteration in the
serial code;
= function(X,4)

[The data mesh x4 F

function(X,1q) 2 Xnew
— Xnew

— Xold = Xnew

Boundary conditions

parallel code:

O
Slide 35/ 644

——

Communication: Send inner data —-. into halo storage

. . . Boundary conditions The data mesh x
One iteration in the [-
serial code: [The data mesh x4 F

_) function(Xy1q) 2 Xnew
— Xnew = function(X,q)
— Xold = Xnew

of the data mesh into Boundary conditions

Preparing the domain decomposition
3x4 subdomains for 12 processes

parallel code:

O
Slide 35/ 644

—

Communication: Send inner data —-. into halo storage

Boundary conditions [The data mesh X, o]

One iteration in the

[The data mesh x4 F

serial code:
: function(Xy1q) 2 Xnew
- X = function(x,,4) °
new old
— Xold = Xnew
Prepariré)gf mg ggg%negﬁ?g{gposition Boundary conditions
3x4 subdomains for 12 processes
parallel code: ———qundanrcopditions

]

Boundary conditions

Xo1g & boundary conditions Xnew» distributed on same
distributed on MPI processes =]
3x4=12 MPI processes Slide 35/ 644

—

Communication: Send inner data —-. into halo storage

. . . Boundary conditions The data mesh x
One iteration in the [-
serial code: [The data mesh x4 F

_) function(Xy1q) 2 Xnew
— Xnew = function(X,q)
— Xold = Xnew

of the data mesh into Boundary conditions

Preparing the domain decomposition
3x4 subdomains for 12 processes

)

para||e| code: Boundary conditions
. K ! | i 1 1

— Update halo s | Y1 s

[=Communication, e.g., with :
4 x MPI_Sendrecv —= tl] C[E_:] | :t::ji E:—E]j:’
| |

1
1
L
T
r
1
1
L
e
[|
1
1
L

M3ty —PI%y £d09 elep Jo peslsul abueyoxe Jsiuiod
moje 01 "“x pue PI°x 1oj 1noAe| Alowaw awes agAep

[T T
r==1 'l""l'I r==1

§ il il il 1

Boundary conditions

[horizontally cyclic boundary conditions

= GEIMYEEE EEURE Mg X519 & boundary conditions Xnew» distributed on same

distributed on MPI processes =]
3x4=12 MPI processes Slide 35/ 644

—

Communication: Send inner data —-. into halo storage

—

Boundary conditions [The data mesh X, o]

One iteration in the
Serlal Code- [The data mesh Xold F

function(X,1q) 2 Xnew

- X = function(X,4)

new

— Xold = Xnew

[Preparing the domain decomposition

of the data mesh into Boundary conditions

3x4 subdomains for 12 processes :
i [In each process: function(x,4 IEI) 2 Xnew -
Boundary conditions ~Z

parallel code: . — - —
— Update halo Lo .-fu--ﬂl Lo ﬁ‘

[=Communication, e.g., with

4 x MPI_Sendrecv —= tl] C[E_:] | :;':::351 E:—E]j:’

new__ = function(X,;q —)

)

X

e M |
| S |
LE----1

s il 1
[horizontally cyclic bounm Boundary conditions
= GEIMYEEE EEURE Mg X519 & boundary conditions Xnew» distributed on same

new:
distributed on MPI processes =]

3x4=12 MPI processes Slide 35/ 644

[|
|
|
L

M3ty —PI%y £d09 elep Jo peslsul abueyoxe Jsiuiod
moje 01 "“x pue PI°x 1oj 1noAe| Alowaw awes agAep

—

Communication: Send inner data —-. into halo storage

—

Boundary conditions [The data mesh X, o]

One iteration in the
Serlal Code- [The data mesh Xold F

function(X,1q) 2 Xnew

- X = function(X,4)

new

— Xold = Xnew

[Preparing the domain decomposition

of the data mesh into Boundary conditions

3x4 subdomains for 12 processes [In each process: function(xoq D) 5 XnewI:I
) Boundary conditions v
parallel code: — — s N
— Update halo ek | | etk | T sl
[=Communication, e.g., with :
— Il'--'l ':'--':'I r==1
4 x MPI_Sendrecv tl] C[E___J | S .____':li:’

)

M3ty —PI%y £d09 elep Jo peslsul abueyoxe Jsiuiod
moje 01 "“x pue PI°x 1oj 1noAe| Alowaw awes agAep

Xnew_ = function(X,,q —,)
- X =X airieh | T ek
old new !
1] |
Il""l ':'"':'I r==1

[horizontally cyclic bounm Boundary conditions
= GEIMYEEE EEURE Mg X519 & boundary conditions Xnew» distributed on same

new:
distributed on MPI processes m

3x4=12 MPI processes Slide 35/ 644

Example code

ib_global =0; ie_global=n-1; //global xold, xnew: arrays with n elements and indexes 0 .. n-1

for(....) [e.g.timesteps

{

numerical_func(xold, xnew, ib_global, ie_global);
tmp=xold; xold=xnew; xnew=tmp; // exchanging role of xold and xnew

} O

Slide 36/ 644

Example code

ib_global =0; ie _global=n-1; // global xold, xnew: arrays with n elements and indexes 0 .. n-1

MPI_Init(null, null);

MPI_Comm_size(MPI_COMM_WORLD, &size); /I size = number of processes

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); // myrank = index of the process from 0 to size-1
[n/size]

ib_local= ib_global+ myrank * ((ie_global-ib_global)/size +1);

ie_local = min(ib_global + (myrank+1) * ((ie_global-ib_global)/size +1), ie_global);

left = (myrank-1 size) % size; right = (myrank+1) % size; // neighbor ranks
To prohibit modulo of negative number

for(....) [/l e.g.timesteps

{ MPI_Sendrecv(*sndbuf/elaiEightIBIECKEBa right, 111, -‘

[*revbuf */|xold, 1, left blue halo, |left, 111, ...); - |
MPI1_Sendrecv(/*sndbuf*/ xold, 1, left_black part, left, :

I*rcvbuf */|xold; 1, right_blue_halo, | right, 22, ...); J
numerical_func(xold, xnew, {s—gtebat ib_local, +e—gtebat ie_local); ib_local ie_local
tmp=xold; xold=xnew; xnew=tmp; //exchanging role of xold and xnew

} o

Slide 36/ 644

Exercise 2: Calculating the size of the subdomains

Goal: Divide a given amount of mesh elements in one dimension into subdomains

 Given: — The number of processes: num_procs (e.g., 4, i.e., 4 subdomains)
— The number of mesh elements: n (e.g., 17 or 5)
— The numerical workload of each element is identical
— The mesh elements are numbered from O to n-1

O
Slide 37/ 644

Exercise 2: Calculating the size of the subdomains

Goal: Divide a given amount of mesh elements in one dimension into subdomains

 Given: — The number of processes: num_procs (e.g., 4, i.e., 4 subdomains)
— The number of mesh elements: n (e.g., 17 or 5)
— The numerical workload of each element is identical “mesh elements
— The mesh elements are numbered from 0 to n-1 per subdomain

« Two possible solutions: (A) 17=5+5+5+2 or 5=2+2+1+0
(B) 17=5+4+4+4 or 5=2+1+1+1

O
Slide 37/ 644

Exercise 2: Calculating the size of the subdomains

Goal: Divide a given amount of mesh elements in one dimension into subdomains
 Given: — The number of processes: num_procs (e.g., 4, i.e., 4 subdomains)
— The number of mesh elements: n (e.g., 17 or 5)
— The numerical workload of each element is identical “mesh elements
— The mesh elements are numbered from 0 to n-1 @M]
« Two possible solutions: (A) 17=5+5+5+2 or 5=2+2+1+0
(B) 17=5+4+4+4 or 5=2+1+1+1
* Output should be like (with B) [Or -1if 0 elements |
| am process 1 out of 4, responsible for the 4 elements with indexes 5.. 8
| am process 0 out of 4, responsible for the 5 elements with indexes 0.. 4

| am process 3 out of 4, responsible for the 4 elements with indexes 13 .. 16
| am process 2 out of 4, responsible for the 4 elements with indexes 9..12

O
Slide 37/ 644

Exercise 2: Calculating the size of the subdomains

Goal: Divide a given amount of mesh elements in one dimension into subdomains
 Given: — The number of processes: num_procs (e.g., 4, i.e., 4 subdomains)
— The number of mesh elements: n (e.g., 17 or 5)
— The numerical workload of each element is identical “mesh elements
— The mesh elements are numbered from 0 to n-1 %MJ
« Two possible solutions: (A) 17=5+5+5+2 or 5=2+2+1+0
(B) 17=5+4+4+4 or 5=2+1+1+1
* Output should be like (with B) [Or -1if 0 elements |
| am process 1 out of 4, responsible for the 4 elements with indexes 5.. 8
| am process 0 out of 4, responsible for the 5 elements with indexes 0.. 4
| am process 3 out of 4, responsible for the 4 elements with indexes 13 .. 16

In MPIItasksl...]I am process 2 out of 4, responsible for the 4 elements with indexes 9..12

« Use: C/Ch1l/first-dd-a.c and C/Chilffirst-dd-b.c

» Test both programs with 4 processes and 9, 8, 7, ... 1 elements

O
Slide 37/ 644

Exercise 2: Calculating the size of the subdomains

Goal: Divide a given amount of mesh elements in one dimension into subdomains
 Given: — The number of processes: num_procs (e.g., 4, i.e., 4 subdomains)

— The number of mesh elements: n (e.g., 17 or 5)
— The numerical workload of each element is identical “mesh elements
— The mesh elements are numbered from 0 to n-1 %M]
« Two possible solutions: (A) 17=5+5+5+2 or 5=2+2+1+0
(B) 17=5+4+4+4 or 5=2+1+1+1

* Output should be like (with B) [Or -1if 0 elements |
| am process 1 out of 4, responsible for the 4 elements with indexes 5.. 8

| am process 0 out of 4, responsible for the 5 elements with indexes 0.. 4
| am process 3 out of 4, responsible for the 4 elements with indexes 13 .. 16

In MPIItasksl...]I am process 2 out of 4, responsible for the 4 elements with indexes 9..12

« Use: C/Ch1l/first-dd-a.c and C/Chilffirst-dd-b.c

» Test both programs with 4 processes and 9, 8, 7, ... 1 elements
Which algorithm would you prefer, and why?
Which are the major principles of A and B?

]
Slide 37/ 644

Collective Communications

Collective communication routines are higher level routines.
Several processes are involved at a time.
May allow optimized internal implementations, e.g., tree based algorithms.

Can be built out of point-to-point communications.

Slide 39/ 644

Broadcast

A one-to-many communication.

Slide 40/ 644

Reduction Operations

Combine data from several processes to produce a single result.

10

15

300

30

Slide 41/ 644

Barriers

« Synchronize processes.

O
Slide 42/ 644

Barriers

« Synchronize processes.

(]
Slide 42/ 644

Parallel File I/O

communication

oo J o

Supercomputing

O
Slide 43/ 644

Parallel File I/O

1

Supercomputing

O
Slide 43/ 644

Parallel File I/O

1

Supercomputing

calculation on time for computation time for serial 1/0O

1 core ' 1 min
= sequentiel = 98.5 % of total time = 1.5 % of total time

64 cores 1 min 1 min
=in parallel =50 % of total time =50 % of total time

Table: example with serial I/O

O
Slide 43/ 644

Parallel File I/O

1

Supercomputing

calculation on time for computation time for serial 1/0O

1 core
= sequentiel = 98.5 % of total time

= 1.5 % of total time

64 cores 1 min 1 min
=in parallel =50 % of total time = 50 % of total time

Table: example with serial I/O

Slide 43/ 644

Parallel File I/O

1

Supercomputing

calculation on time for computation time for serial 1/0O

1 core
= sequentiel = 98.5 % of total time = 1.5 % of total time

64 cores 1 min 1 min
=in parallel =50 % of total time = 50 % of total time

Table: example with serial I/O

]
Slide 43/ 644

Speedup, Efficiency, Scaleup, and Weak Scaling

« Definition: T(p,N) = time to solve problem of total size N on p processors

(Three different ways of
« Parallel speedup: S(p,N) = T(l,N) / T(p,N) l{reporting the success

compute same problem with more processors fin shorter time

« Parallel Efficiency: E(p,N) =S(p,N)/p

O
Slide 44/ 644

Speedup, Efficiency, Scaleup, and Weak Scaling

Definition:

T(p,N) = time to solve problem of total size N on p processors

Parallel speedup:

Parallel Efficiency:

(Three different ways of
S(p,N) = T(1,N) / T(p,N) l{reporting the success

compute same problem with more processors fin shorter time

E(p,N) =S(p,N) /' p

Scaleup:

Sc(p,N)=N/n with T(1,n) = T(p,N)
compute larger problem with more processors|in same time

O
Slide 44/ 644

Speedup, Efficiency, Scaleup, and Weak Scaling

Definition:

T(p,N) = time to solve problem of total size N on p processors

Parallel speedup:

Parallel Efficiency:

(Three different ways of
S(p,N) = T(1,N) / T(p,N) l{reporting the success

compute same problem with more processors fin shorter time

E(p,N) =S(p,N) /' p

Scaleup:

Sc(p,N)=N/n with T(1,n) = T(p,N)
compute larger problem with more processors|in same time

Weak scaling:

T(p, pen) / T(1,n) is reported,
i.e., problem size per process (n) is fixed

O
Slide 44/ 644

Speedup, Efficiency, Scaleup, and Weak Scaling

Definition: T(p,N) = time to solve problem of total size N on p processors

(Three different ways of
Parallel speedup: S(p,N) = T(l,N) / T(p,N) l{reporting the success

compute same problem with more processors fin shorter time

Parallel Efficiency: E(p,N) = S(p,N)/p

Scaleup: Sc(p,N)=N/n with T(1,n) = T(p,N)
compute larger problem with more processors|in same time

Weak scaling: T(p, pen) / T(1,n) is reported,
l.e., problem size per process (n) is fixed

Problems:
— Absolute MFLOPS rate / hardware peak performance?

— Super-scalar speedup: S(p,N)>p, e.g., due to cache” usage for large p:

T(1,N) may be based on a huge number of N data elements in the memory in the one process,
whereas

T(p,N) may be based on cache based execution due to only N/p data elements per process

— S(p,N) close to p or far less? > see Amdahl’s Law on next slide

(]
Slide 44/ 644

Amdahl’s Law

T(p,N)=fT(1,N) + (1-/)-T(A,N)/p

f ... sequential part of code that can not be done in parallel
S(p,N) =T(LN) /T(p,N) =1/ (f + (1-f) / p)
For p —> infinity, speedup is limited by S(p,N) <1/ f

100
90
80 4
70 -

4

60 Za
50 va
40 y
30 AT

20 |

10 -

O | |

O 20 40 60 80 100
p = #processors

Speedup S(p,N)

— S(p,N) = p (ideal speedup)

——f=0.1% => S(p,N) < 1000

——f= 1% => S(p,N) <100
f= 5% => S(p,N) <20

- f=10% => S(p,N) < 10

Slide 45/ 644

Amdahl’s Law (double-logarithmic)

T(p,N) =f-T(1L,N) + (1-)-T(LN)/p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(LN) /T(p,N) =1/ (f + (1-f) / p)
For p —> infinity, speedup is limited by S(p,N) <1/ f

1000 -
Zail :
2 100 1 — S(p,N) =p (ideal speedup)
tnj / | ——f=0.1% => S(p,N) < 1000
E g T = 1% => S(pN) <1
10 ar :LM 0 S(p,N) < 100
& ‘T f= 5% => S(p,N) < 20
%
1 —-—f=10% => S(p,N) <10

1 10 100 1000

p = #processors

Slide 46/ 644

Quiz on Chapter 1 — Overview

Two developers report about their limited success when parallelizing an application:

A. “My application is now running in parallel with 1000 MPI processes and my major limiting
factor for scaling is

— that | need about 90% of the whole compute time for MPl communication.”

B. “My application is now running in parallel with 1000 MPI processes and my major limiting
factor for scaling is

— that | could not parallelize about 10% of the execution time of my sequential program.”

What are your answers for
* In your opinion, who was more successful, A or B, or both almost equally?

« Can you calculate an estimate for the parallel efficiency of the parallel run reported
by A and B?

Slide 51/ 644

