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Outline

1. MPI Overview
– one program on several processors
– work and data distribution

2. Process model and language bindings
– starting several MPI processes

3. Messages and point-to-point communication
– the MPI processes can communicate

4. Nonblocking communication
– to avoid idle time, deadlocks

and serializations

MPI_Init()
MPI_Comm_rank()
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5. The New Fortran Module mpi_f08

6. Collective communication
– (1) e.g., broadcast
– (2) e.g., nonblocking collectives, neighborhood communic.

7. Error handling
– error handler, codes, and classes

8. Groups & Communicators, Environmental Management
– (1) MPI_Comm_split, intra- & inter-communicators
– (2) Re-numbering on a cluster, collective communication on

inter-communicators, info object, naming & attribute caching, 
implementation information, Sessions Model

9. Virtual topologies
– (1) A multi-dimensional process naming scheme

– (2) Neighborhood communication + MPI_BOTTOM

– (3) Optimization through reordering

M
P

I 
 O

u
tl
in

e

3.1, 

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

Handout is 

sorted by 

content … … whereas course is 

sorted by beginners / 

intermediate / advanced

??? Something to add ???

Corrections fro. 2022
23x …
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10. One-sided Communication
– Windows, remote memory access (RMA)
– Synchronization

11. Shared Memory One-sided Communication
– (1) MPI_Comm_split_type & MPI_Win_allocate_shared

Hybrid MPI and MPI shared memory programming
– (2) MPI memory models and synchronization rules

12. Derived datatypes
– (1) transfer any combination of typed data
– (2) advanced features, alignment, resizing

13. Parallel File I/O
– (1) Writing and reading a file in parallel
– (2) Fileviews
– (3) Shared Filepointers, Collective I/O …

14. MPI and Threads
– e.g., hybrid MPI and OpenMP,

partitioned point-to-point communication

M
P

I 
 O

u
tl
in

e

mpi processes of a communicator

file, physical view

file, logical view

addressed

only by 

hints

scope of

MPI-I/O

put

get

Ch.11
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15. Probe, Persistent Requests, Cancel

16. Process Creation and Management
– Spawning additional processes
– Singleton MPI_INIT
– Connecting two independent sets of MPI processes

17. Other MPI features [1, 2, 13.1-3, 15, 16-18, 19.3, A, A.2, B] 

18. Best practice
– Parallelization strategies (e.g. Foster’s Design Methodology)
– Performance considerations
– Pitfalls and progress / weak local

19. Heat example

Summary

Appendix
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Information about MPI

• MPI: A Message-Passing Interface Standard, Version 4.0 (June 9, 2021)

(pdf  &  printed hardcover book [MPI-3.1 only]  online via www.mpi-forum.org)

• Marc Snir and William Gropp et al.: MPI: The Complete Reference, 1998. (outdated)

• William Gropp, Ewing Lusk and Anthony Skjellum:

Using MPI: Portable Parallel Programming With the Message-Passing Interface.
MIT Press, 3rd edition, Nov. 2014 (336 pages, ISBN 9780262527392), and

William Gropp, Torsten Hoefler, Rajeev Thakur and Ewing Lusk:

Using Advanced MPI: Modern Features of the Message-Passing Interface.
MIT Press, Nov. 2014  (392 pages, ISBN 9780262527637).

• Peter S. Pacheco: Parallel Programming with MPI. Morgan Kaufmann Publishers,

1997  (very good introduction, can be used as accompanying text for MPI lectures).

• Neil MacDonald, Elspeth Minty, Joel Malard, Tim Harding, Simon Brown, Mario

Antonioletti: Parallel Programming with MPI. Historical MPI course notes from EPCC.
http://www.archer.ac.uk/training/course-material/2014/10/MPI_UCL/Notes/MPP-notes.pdf

• All MPI standard documents and errata via www.mpi-forum.org

• http://en.wikipedia.org/wiki/Message_Passing_Interface  (English)

http://de.wikipedia.org/wiki/Message_Passing_Interface  (German)

• Tools: see VI-HPS (Virtual Institute – High Productivity Supercomputing) https://www.vi-hps.org/

Tools Guide: https://www.vi-hps.org/cms/upload/material/general/ToolsGuide.pdf &  training events

• Python: See MPI for Python (mpi4py.github.io), and MPI for Python documentation

(mpi4py.readthedocs.io), and the Reference (mpi4py.readthedocs.io/en/stable/reference.html)

Outdated API reference: mpi4py.github.io/apiref/index.html

New link to this historical doc

3.1, 

Corrections fro. 2022
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The Message-Passing Programming Paradigm 

• Sequential Programming Paradigm

data

pro-

gram

memory

runs in a process on a processor
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The Message-Passing Programming Paradigm 

• Sequential Programming Paradigm

data

pro-

gram

memory

runs in a process on a processor

• Message-Passing Programming Paradigm

data

sub-

program

data

sub-

program

data

sub-

program

data

sub-

program

communication network

distributed
memory

in parallel
processes,
typically each 
on a 
dedicated
CPU, core, or
hyperthread
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Analogy:  Electric Installations in Parallel

• MPI sub-program

= work of one electrician

on one floor

• MPI process on a dedicated

hardware

= the electrician

• data

= the electric installation

• MPI communication

= real communication

to guarantee that the wires

are coming at the same

position through the floor

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o
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Parallel hardware architectures

Socket/CPU
memory interface

UMA (uniform memory access)
SMP (symmetric multi-processing)
All cores connected to all memory
banks with same speed

Parallel execution streams on each 
core, e.g., 
x[       0 …   999] = … on 1st core
x[1000 … 1999] = … on 2nd core
x[2000 … 2999] = … on 3rd core
…

shared memory

and
Claudia‘s

see Acknowledgements slide
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Parallel hardware architectures

memory memory memory memory
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Socket/CPU
memory interface

UMA (uniform memory access)
SMP (symmetric multi-processing)
All cores connected to all memory
banks with same speed

Parallel execution streams on each 
core, e.g., 
x[       0 …   999] = … on 1st core
x[1000 … 1999] = … on 2nd core
x[2000 … 2999] = … on 3rd core
…

Node
 hyper-transport
ccNUMA (cache-coherent non-uniform

memory access)
 Shared memory programming is possible
!!  #CPUs  x  memory bandwidth  !!
Performance problems:
• Each parallel execution stream should

mainly access the memory of its CPU
 First-touch strategy is needed to
minimize remote memory access

• Threads should be
pinned to the physical sockets
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Parallel hardware architectures

memory memory memory memory

hyper-transport

SocketSocketSocketSocket

Node

Socket/CPU
memory interface

UMA (uniform memory access)
SMP (symmetric multi-processing)
All cores connected to all memory
banks with same speed

Parallel execution streams on each 
core, e.g., 
x[       0 …   999] = … on 1st core
x[1000 … 1999] = … on 2nd core
x[2000 … 2999] = … on 3rd core
…

Node
 hyper-transport
ccNUMA (cache-coherent non-uniform

memory access)
 Shared memory programming is possible
!!  #CPUs  x  memory bandwidth  !!
Performance problems:
• Each parallel execution stream should

mainly access the memory of its CPU
 First-touch strategy is needed to
minimize remote memory access

• Threads should be
pinned to the physical sockets

shared memory

Shared memory programming with OpenMP

and
Claudia‘s

see Acknowledgements slide

Slide 12

Sockets with 4 memory conn.,

memory-interface

core

mem. bank mem. bank mem. bank mem. bank

core core core

Socket / CPU

memory

Corrections from 2023
Added:



/ 644

Parallel hardware architectures

memory memory memory memory

hyper-transport

SocketSocketSocketSocket

Node NodeNodeNodeNode

node-interconnect

distributed memory

Cluster
 node-interconnect

NUMA (non-uniform memory access)
!! fast access only on its own memory !!
Many programming options:

• Shared memory / symmetric multi-
processing inside of each node

• distributed memory parallelization on the
node interconnect

• Or simply one MPI process on each core
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Parallel hardware architectures
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• Each parallel execution stream should
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shared memory

Shared memory programming with OpenMP

MPI works everywhere
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The Message-Passing Programming Paradigm 

• Each processor in a message passing program runs a sub-program:

– written in a conventional sequential language, e.g., C, Fortran, or Python

– typically the same on each processor (SPMD),

– the variables of each sub-program have
• the same name

• but different locations (distributed memory) and different data!

• i.e., all variables are private

– communicate via special send & receive routines (message passing)

data

sub-

program

communication network

Slide 13
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The Message-Passing Programming Paradigm 

• Each processor in a message passing program runs a sub-program:

– written in a conventional sequential language, e.g., C, Fortran, or Python

– typically the same on each processor (SPMD),

– the variables of each sub-program have
• the same name

• but different locations (distributed memory) and different data!

• i.e., all variables are private

– communicate via special send & receive routines (message passing)

data

sub-

program

communication network

Caution

completely 

different model

compared to

• OpenMP

• Python with

concurrent futures

• pthreads, shmem
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Data and Work Distribution

• the value of myrank is returned by special library routine

• the system of size processes is started by special MPI initialization

program (mpirun or mpiexec)

• all distribution decisions are based on myrank

• i.e., which process works on which data

myrank=0

data

sub-

program

myrank=1

data

sub-

program

myrank=2

data

sub-

program

myrank=
(size-1)

data

sub-

program

communication network

Slide 14
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What is SPMD?

• Single Program, Multiple Data

• Same (sub-)program runs on each processor

• MPI allows also MPMD, i.e., Multiple Program, ...

• but some vendors may be restricted to SPMD

• MPMD can be emulated with SPMD

Slide 15
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Emulation of Multiple Program (MPMD), Example

• main(int argc, char **argv)
{

if (myrank < .... /* process should run the ocean model */)
{

ocean( /* arguments */ );
}else{

weather( /* arguments */ );
}

}

• PROGRAM
IF (myrank < ... ) THEN   !! process should run the ocean model

CALL  ocean ( some arguments )
ELSE

CALL  weather ( some arguments )
ENDIF
END

• if (myrank < .... ):  # process should run the ocean model
ocean( … )

else:
weather( … )

Changes in Ch.1 by Irene

Slide 16
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first-example.c

Slide 17
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

MPI_Finalize();
}

first-example.c

MPI course  Chap. 1 Overview Slide 17
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

MPI_Finalize();
}

first-example.c Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:   mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 

MPI course  Chap. 1 Overview Slide 17
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

int my_rank, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

MPI_Finalize();
}

Now, each process knows who it is:

number my_rank out of num_procs processes

first-example.c

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 

MPI course  Chap. 1 Overview Slide 17
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{
int n;  double result;
int my_rank, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

MPI_Finalize();
}

Now, each process knows who it is:

number my_rank out of num_procs processes

first-example.c

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{
int n;  double result;
int my_rank, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_rank == 0)

{ printf("Enter the number of elements (n): \n");

scanf("%d",&n);

}

MPI_Finalize();
}

reading the application data n from stdin only 

by process 0

Now, each process knows who it is:

number my_rank out of num_procs processes

first-example.c

Enter the number of elements (n):
100

input/output

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 
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#include <stdio.h>
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if (my_rank == 0)
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scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Finalize();
}

reading the application data n from stdin only 

by process 0

broadcasting the content of variable n in process 0 

into variables n in all other processes

Now, each process knows who it is:

number my_rank out of num_procs processes

process 0 is sender, all other 
processes are receivers

first-example.c

Enter the number of elements (n):
100

input/output

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{
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scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

result = 1.0 * my_rank * n;

MPI_Finalize();
}

reading the application data n from stdin only 

by process 0

broadcasting the content of variable n in process 0 

into variables n in all other processes

doing some application work in each process

Now, each process knows who it is:

number my_rank out of num_procs processes

process 0 is sender, all other 
processes are receivers

first-example.c
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input/output

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 

MPI course  Chap. 1 Overview Slide 17



© 2000-2024 HLRS, Rolf Rabenseifner

/ 644

#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{
int n;  double result;
int my_rank, num_procs;
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if (my_rank == 0)
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scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

result = 1.0 * my_rank * n;

printf("I am process %i out of %i handling the %ith part of n=%i elements,result=%f\n",

my_rank,  num_procs,   my_rank,     n,                result);

MPI_Finalize();
}

reading the application data n from stdin only 

by process 0

broadcasting the content of variable n in process 0 

into variables n in all other processes

doing some application work in each process

Now, each process knows who it is:

number my_rank out of num_procs processes

process 0 is sender, all other 
processes are receivers

first-example.c

Enter the number of elements (n):
100
I am process 0 out of 4 handling the 0th part of n=100 elements, result=0.0
I am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
I am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
I am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0

input/output

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{
int n;  double result;
int my_rank, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_rank == 0)

{ printf("Enter the number of elements (n): \n");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

result = 1.0 * my_rank * n;

printf("I am process %i out of %i handling the %ith part of n=%i elements,result=%f\n",

my_rank,  num_procs,   my_rank,     n,                result);

if (my_rank != 0)

{  
MPI_Send(&result,1,MPI_DOUBLE,0,99,MPI_COMM_WORLD);

} 

else

MPI_Finalize();
}

reading the application data n from stdin only 

by process 0

broadcasting the content of variable n in process 0 

into variables n in all other processes

doing some application work in each process

Now, each process knows who it is:

number my_rank out of num_procs processes

sending some results from

all processes (except 0) to process 0

send to process 0

process 0 is sender, all other 
processes are receivers

first-example.c

Enter the number of elements (n):
100
I am process 0 out of 4 handling the 0th part of n=100 elements, result=0.0
I am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
I am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
I am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0

input/output

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{
int n;  double result;
int my_rank, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_rank == 0)

{ printf("Enter the number of elements (n): \n");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

result = 1.0 * my_rank * n;

printf("I am process %i out of %i handling the %ith part of n=%i elements,result=%f\n",

my_rank,  num_procs,   my_rank,     n,                result);

if (my_rank != 0)

{  
MPI_Send(&result,1,MPI_DOUBLE,0,99,MPI_COMM_WORLD);

} 

else

MPI_Finalize();
}

reading the application data n from stdin only 

by process 0

broadcasting the content of variable n in process 0 

into variables n in all other processes

doing some application work in each process

Now, each process knows who it is:

number my_rank out of num_procs processes

sending some results from

all processes (except 0) to process 0

Process 0: receiving all these messages and, e.g., printing them

send to process 0

process 0 is sender, all other 
processes are receivers

first-example.c

Enter the number of elements (n):
100
I am process 0 out of 4 handling the 0th part of n=100 elements, result=0.0
I am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
I am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
I am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0

input/output

well sorted output
from process 0

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{
int n;  double result;
int my_rank, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_rank == 0)

{ printf("Enter the number of elements (n): \n");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

result = 1.0 * my_rank * n;

printf("I am process %i out of %i handling the %ith part of n=%i elements,result=%f\n",

my_rank,  num_procs,   my_rank,     n,                result);

if (my_rank != 0)

{  
MPI_Send(&result,1,MPI_DOUBLE,0,99,MPI_COMM_WORLD);

} 

else

{ int rank;

printf("I'm proc 0: My own result is %f \n",result);

}

MPI_Finalize();
}

reading the application data n from stdin only 

by process 0

broadcasting the content of variable n in process 0 

into variables n in all other processes

doing some application work in each process

Now, each process knows who it is:

number my_rank out of num_procs processes

sending some results from

all processes (except 0) to process 0

Process 0: receiving all these messages and, e.g., printing them

send to process 0

process 0 is sender, all other 
processes are receivers

first-example.c

Enter the number of elements (n):
100
I am process 0 out of 4 handling the 0th part of n=100 elements, result=0.0
I am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
I am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
I am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0
I'm proc 0: My own result is 0.0

input/output

well sorted output
from process 0

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{
int n;  double result;
int my_rank, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_rank == 0)

{ printf("Enter the number of elements (n): \n");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

result = 1.0 * my_rank * n;

printf("I am process %i out of %i handling the %ith part of n=%i elements,result=%f\n",

my_rank,  num_procs,   my_rank,     n,                result);

if (my_rank != 0)

{  
MPI_Send(&result,1,MPI_DOUBLE,0,99,MPI_COMM_WORLD);

} 

else

{ int rank;

printf("I'm proc 0: My own result is %f \n",result);

for (rank=1; rank<num_procs; rank++)

{

}
}

MPI_Finalize();
}

reading the application data n from stdin only 

by process 0

broadcasting the content of variable n in process 0 

into variables n in all other processes

doing some application work in each process

Now, each process knows who it is:

number my_rank out of num_procs processes

sending some results from

all processes (except 0) to process 0

Process 0: receiving all these messages and, e.g., printing them

send to process 0

process 0 is sender, all other 
processes are receivers

first-example.c

Enter the number of elements (n):
100
I am process 0 out of 4 handling the 0th part of n=100 elements, result=0.0
I am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
I am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
I am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0
I'm proc 0: My own result is 0.0

input/output

well sorted output
from process 0

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 
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#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{
int n;  double result;
int my_rank, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_rank == 0)

{ printf("Enter the number of elements (n): \n");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

result = 1.0 * my_rank * n;

printf("I am process %i out of %i handling the %ith part of n=%i elements,result=%f\n",

my_rank,  num_procs,   my_rank,     n,                result);

if (my_rank != 0)

{  
MPI_Send(&result,1,MPI_DOUBLE,0,99,MPI_COMM_WORLD);

} 

else

{ int rank;

printf("I'm proc 0: My own result is %f \n",result);

for (rank=1; rank<num_procs; rank++)

{

MPI_Recv(&result,1,MPI_DOUBLE,rank,99,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}
}

MPI_Finalize();
}

reading the application data n from stdin only 

by process 0

broadcasting the content of variable n in process 0 

into variables n in all other processes

doing some application work in each process

Now, each process knows who it is:

number my_rank out of num_procs processes

sending some results from

all processes (except 0) to process 0

Process 0: receiving all these messages and, e.g., printing them

send to process 0

process 0 is sender, all other 
processes are receivers

first-example.c

receiving the message from process rank

Enter the number of elements (n):
100
I am process 0 out of 4 handling the 0th part of n=100 elements, result=0.0
I am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
I am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
I am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0
I'm proc 0: My own result is 0.0

input/output

well sorted output
from process 0

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 

MPI course  Chap. 1 Overview Slide 17



© 2000-2024 HLRS, Rolf Rabenseifner

/ 644

#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{
int n;  double result;
int my_rank, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_rank == 0)

{ printf("Enter the number of elements (n): \n");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

result = 1.0 * my_rank * n;

printf("I am process %i out of %i handling the %ith part of n=%i elements,result=%f\n",

my_rank,  num_procs,   my_rank,     n,                result);

if (my_rank != 0)

{  
MPI_Send(&result,1,MPI_DOUBLE,0,99,MPI_COMM_WORLD);

} 

else

{ int rank;

printf("I'm proc 0: My own result is %f \n",result);

for (rank=1; rank<num_procs; rank++)

{

MPI_Recv(&result,1,MPI_DOUBLE,rank,99,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("I'm proc 0: received result of 

process %i is %f \n", rank, result);
}

}

MPI_Finalize();
}

reading the application data n from stdin only 

by process 0

broadcasting the content of variable n in process 0 

into variables n in all other processes

doing some application work in each process

Now, each process knows who it is:

number my_rank out of num_procs processes

sending some results from

all processes (except 0) to process 0

Process 0: receiving all these messages and, e.g., printing them

send to process 0

process 0 is sender, all other 
processes are receivers

first-example.c

receiving the message from process rank

Enter the number of elements (n):
100
I am process 0 out of 4 handling the 0th part of n=100 elements, result=0.0
I am process 2 out of 4 handling the 2th part of n=100 elements, result=200.0
I am process 3 out of 4 handling the 3th part of n=100 elements, result=300.0
I am process 1 out of 4 handling the 1th part of n=100 elements, result=100.0
I'm proc 0: My own result is 0.0
I'm proc 0: received result of process 1 is 100.0
I'm proc 0: received result of process 2 is 200.0
I'm proc 0: received result of process 3 is 300.0

input/output

well sorted output
from process 0

application-related data

MPI-related data

Compiled, e.g., with:  mpicc first-example.c

Started, e.g., with:     mpiexec -n 4 ./a.out

Then, this code is running 4 times in parallel ! 
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Exercise 1

Please run this first example on your exercise system:

cd  MPI/tasks/F_30/Ch1• cd  MPI/tasks/C/Ch1

cd  MPI/tasks/PY/Ch1

• Initialize your compile and MPI environment,
e.g.,  module load gnu openmpi (on my system )

• ls  -l  first-example.c or first-example_30.f90  or first-example.py

• mpicc first-example.c mpif90  first-example_30.f90

and mpirun -np  4  ./a.out

• mpirun -np  4  python3  first-example.py  (no compilation, parallel start of the interpreter)

• (or equivalent commands on your system)

• As input, you may choose: 100       ( output should be similar to previous slide)
CAUTION: The previous printout “Enter the number” may be missing. Do not wait! Just type 100 [RETURN] - it should work!

• Look at the sequence of the output lines for several runs with 4 to 10
processes

That’s all, done. 

E
x
e
rc

is
e
 1 Fortran

FortranC

Already done as 

part of the course 

preparation

Caution: OpenMPI is an MPI 

library, whereas OpenMP is a 

shared memory parallel 

programming model

Python

Python

C

Basis for the entire course
Corrections from 2021

Corrections fro. 2022

–

Slide 18
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Exercise 1 – Solution + Questions 

mpif90 first-example_30.f90

mpirun -np  6  ./a.out

Enter the number of elements (n):

100

I am process  0 out of  6 handling the  0th part of n=  100 elements, result=  0.00

I am process  1 out of  6 handling the  1th part of n=  100 elements, result=  100.00

I am process  2 out of  6 handling the  2th part of n=  100 elements, result=  200.00

I am process  3 out of  6 handling the  3th part of n=  100 elements, result=  300.00

I am process  4 out of  6 handling the  4th part of n=  100 elements, result=  400.00

I am process  5 out of  6 handling the  5th part of n=  100 elements, result=  500.00

I'm proc 0: My own result is  0.00

I'm proc 0: received result of process  1 is  100.00

I'm proc 0: received result of process  2 is  200.00

I'm proc 0: received result of process  3 is  300.00

I'm proc 0: received result of process  4 is  400.00

I'm proc 0: received result of process  5 is  500.00

Corrections fro. 2022

–
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Exercise 1 – Solution + Questions 

mpif90 first-example_30.f90

mpirun -np  6  ./a.out

Enter the number of elements (n):

100

I am process  0 out of  6 handling the  0th part of n=  100 elements, result=  0.00

I am process  1 out of  6 handling the  1th part of n=  100 elements, result=  100.00

I am process  2 out of  6 handling the  2th part of n=  100 elements, result=  200.00

I am process  3 out of  6 handling the  3th part of n=  100 elements, result=  300.00

I am process  4 out of  6 handling the  4th part of n=  100 elements, result=  400.00

I am process  5 out of  6 handling the  5th part of n=  100 elements, result=  500.00

I'm proc 0: My own result is  0.00

I'm proc 0: received result of process  1 is  100.00

I'm proc 0: received result of process  2 is  200.00

I'm proc 0: received result of process  3 is  300.00

I'm proc 0: received result of process  4 is  400.00

I'm proc 0: received result of process  5 is  500.00

Normally, you’ll never 
see this perfect output !

Corrections fro. 2022

–
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Exercise 1 – Solution + Questions 

mpif90 first-example_30.f90

mpirun -np  6  ./a.out

Enter the number of elements (n):

100

I am process  0 out of  6 handling the  0th part of n=  100 elements, result=  0.00

I am process  1 out of  6 handling the  1th part of n=  100 elements, result=  100.00

I am process  2 out of  6 handling the  2th part of n=  100 elements, result=  200.00

I am process  3 out of  6 handling the  3th part of n=  100 elements, result=  300.00

I am process  4 out of  6 handling the  4th part of n=  100 elements, result=  400.00

I am process  5 out of  6 handling the  5th part of n=  100 elements, result=  500.00

I'm proc 0: My own result is  0.00

I'm proc 0: received result of process  1 is  100.00

I'm proc 0: received result of process  2 is  200.00

I'm proc 0: received result of process  3 is  300.00

I'm proc 0: received result of process  4 is  400.00

I'm proc 0: received result of process  5 is  500.00

Normally, you’ll never 
see this perfect output !

Why ?

Corrections fro. 2022

–
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Exercise 1 – Solution + Answers 

mpif90 first-example_30.f90

mpirun -np  6 ./a.out

Enter the number of elements (n):

100

I am process  4 out of 6 handling the 4th part of n= 100 elements, result= 400.00

I am process   0 out of  6 handling the  0th part of n=  100 elements, result= 0.00

I'm proc 0: My own result is  0.00

I am process  2 out of 6 handling the 2th part of  n=  100 elements,  result= 200.00

I am process   1 out of 6 handling the 1th part of  n=  100 elements,  result= 100.00

I'm proc 0: received result of process  1 is  100.00

I'm proc 0: received result of process  2 is  200.00

I'm proc 0: received result of process  3 is  300.00

I am process    3 out of    6 handling the  3th part of  n=   100 elements,  result=    300.00

I'm proc 0: received result of process  4 is  400.00

I am process   5 out of  6 handling the  5th part of  n= 100 elements,  result=  500.00

I'm proc 0: received result of process  5 is  500.00

Corrections fro. 2022

–
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Exercise 1 – Solution + Answers 

mpif90 first-example_30.f90

mpirun -np  6 ./a.out

Enter the number of elements (n):

100

I am process  4 out of 6 handling the 4th part of n= 100 elements, result= 400.00

I am process   0 out of  6 handling the  0th part of n=  100 elements, result= 0.00

I'm proc 0: My own result is  0.00

I am process  2 out of 6 handling the 2th part of  n=  100 elements,  result= 200.00

I am process   1 out of 6 handling the 1th part of  n=  100 elements,  result= 100.00

I'm proc 0: received result of process  1 is  100.00

I'm proc 0: received result of process  2 is  200.00

I'm proc 0: received result of process  3 is  300.00

I am process    3 out of    6 handling the  3th part of  n=   100 elements,  result=    300.00

I'm proc 0: received result of process  4 is  400.00

I am process   5 out of  6 handling the  5th part of  n= 100 elements,  result=  500.00

I'm proc 0: received result of process  5 is  500.00

General rule:

The output of each process 

is in the well defined sequence of its sub-program,

see, e.g., the bold text from process 0!

Corrections fro. 2022

–
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Exercise 1 – Solution + Answers 

The output from different processes can be intermixed in any sequence!

Most MPI libraries try to not intersect output lines 

mpif90 first-example_30.f90

mpirun -np  6 ./a.out

Enter the number of elements (n):

100

I am process  4 out of 6 handling the 4th part of n= 100 elements, result= 400.00

I am process   0 out of  6 handling the  0th part of n=  100 elements, result= 0.00

I'm proc 0: My own result is  0.00

I am process  2 out of 6 handling the 2th part of  n=  100 elements,  result= 200.00

I am process   1 out of 6 handling the 1th part of  n=  100 elements,  result= 100.00

I'm proc 0: received result of process  1 is  100.00

I'm proc 0: received result of process  2 is  200.00

I'm proc 0: received result of process  3 is  300.00

I am process    3 out of    6 handling the  3th part of  n=   100 elements,  result=    300.00

I'm proc 0: received result of process  4 is  400.00

I am process   5 out of  6 handling the  5th part of  n= 100 elements,  result=  500.00

I'm proc 0: received result of process  5 is  500.00

General rule:

The output of each process 

is in the well defined sequence of its sub-program,

see, e.g., the bold text from process 0!

Corrections fro. 2022

–
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Access

• A sub-program needs to be connected to a message passing system

• A message passing system is similar to:

– mail box

– phone line

– fax machine

– etc.

• MPI:

– sub-program must be linked with an MPI library

– sub-program must use include file of this MPI library

– the total program (i.e., all sub-programs of the program)

must be started with the MPI startup tool

Changes in Ch.1 by Irene
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Access

• A sub-program needs to be connected to a message passing system

• A message passing system is similar to:

– mail box

– phone line

– fax machine

– etc.

• MPI:

– sub-program must be linked with an MPI library

– sub-program must use include file of this MPI library

– the total program (i.e., all sub-programs of the program)

must be started with the MPI startup tool

Changes in Ch.1 by Irene
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Messages

• Messages are packets of data moving between sub-programs

• Necessary information for the message passing system:

– sending process – receiving process i.e., the ranks

– source location – destination location

– source data type – destination data type

– source data size – destination buffer size

data

sub-

program

communication network

Changes in Ch.1 by Irene
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Messages

• Messages are packets of data moving between sub-programs

• Necessary information for the message passing system:

– sending process – receiving process i.e., the ranks

– source location – destination location

– source data type – destination data type

– source data size – destination buffer size

data

sub-

program

communication network

basic or derived

datatypes 
Changes in Ch.1 by Irene
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Addressing

• Messages need to have addresses to be sent to.

• Addresses are similar to:

– mail addresses

– phone number

– fax number

– etc.

• MPI: addresses are ranks of the MPI processes (sub-programs)

Slide 24



/ 644

Receiving

• All messages must be received.

Slide 25
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Point-to-Point Communication

• Simplest form of message passing.

• One process sends a message to another.

• Different types of point-to-point communication:

– synchronous send

– buffered = asynchronous send

Slide 26
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Synchronous Sends

• The sender gets an information that the message is received.

• Analogue to the beep or okay-sheet of a fax.

ok

beep

Slide 27
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Buffered = Asynchronous Sends

• Only know when the message has left.
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Blocking Operations

• Operations are activities, such as

– sending (a message)

– receiving (a message)

• Some operations may block until another process acts:

– synchronous send operation blocks until receive is posted;

– receive operation blocks until message was sent.

• Relates to the completion of an operation.

• Blocking subroutine returns only when the operation has completed.

Slide 29
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Nonblocking Operations

ok

beep

nonblocking synchronous send

Nonblocking operations consist of:

• A nonblocking procedure call: it returns immediately and allows the

sub-program to perform other work

• At some later time the sub-program must test or wait for the completion

of the nonblocking operation

Slide 30
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Non-Blocking Operations  (cont‘d)

• All nonblocking procedures must have a matching wait (or test) procedure.

(Some system or application resources can be freed only when the

nonblocking operation is completed.)

• A nonblocking procedure immediately followed by a matching wait

is equivalent to a blocking procedure.

• Nonblocking procedures are not the same as sequential subroutine calls:

– the operation may continue while the application executes the next

statements!

Slide 31
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Interrupt: Example & Exercise 2

• Before we further go through the MPI chapter overview on

– Collective Communication

– Parallel file I/O

• Lets look at halo communication

• plus a short exercise 2

Slide 32
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Example: Domain decomposition – serial 

• xnew (i,j) = f ( xold(i-1,j), xold (i,j), xold (i+1,j), xold (i,j-1), xold (i,j+1))

serial

x (i,j)

Changes in Ch.1 by Irene

To calculate xnew(i,j), these additional 

elements of xold are needed 
based on the ±1 in the formula 

To 

Slide 33
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Example: Domain decomposition – parallel

parallel

• xnew (i,j) = f ( xold(i-1,j), xold (i,j), xold (i+1,j), xold (i,j-1), xold (i,j+1))

x (i,j)

x (i,j)

x (i,j)

x (i,j)

xold calculated 

within this sub-domain 

A copy of that data, stored in 

an additional “halo cell” for that sub-domain

Communication

Changes in Ch.1 by Irene

Slide 34
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Important:
In each direction, 

all halo data should be sent 

together in one message 

 best bandwidth

Compared to single word 

messages with, e.g., only

8 bytes / 1 µs = 8 MB/s

Example: Domain decomposition – parallel

parallel

• xnew (i,j) = f ( xold(i-1,j), xold (i,j), xold (i+1,j), xold (i,j-1), xold (i,j+1))

x (i,j)

x (i,j)

x (i,j)

x (i,j)

xold calculated 

within this sub-domain 

A copy of that data, stored in 

an additional “halo cell” for that sub-domain

Communication

Changes in Ch.1 by Irene
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Communication: Send inner data    into halo storage

One iteration in the

serial code:

– xnew = function(xold)

– xold = xnew

function(xold)  Xnew

Boundary conditions

Boundary conditions

The data mesh xold

The data mesh xnew

Slide 35
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Communication: Send inner data    into halo storage

One iteration in the

serial code:

– xnew = function(xold)

– xold = xnew

function(xold)  Xnew

Boundary conditions

Boundary conditions

parallel code:

The data mesh xold

The data mesh xnew
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Communication: Send inner data    into halo storage

One iteration in the

serial code:

– xnew = function(xold)

– xold = xnew

function(xold)  Xnew

Boundary conditions

Boundary conditions

parallel code:

Preparing the domain decomposition
of the data mesh into 

3x4 subdomains for 12 processes

The data mesh xold

The data mesh xnew
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Communication: Send inner data    into halo storage

One iteration in the

serial code:

– xnew = function(xold)

– xold = xnew

Boundary conditions

Boundary conditions

xold & boundary conditions 

distributed on 

3x4=12 MPI processes

xnew, distributed on same 

MPI processes

function(xold)  Xnew

Boundary conditions

Boundary conditions

parallel code:

Preparing the domain decomposition
of the data mesh into 

3x4 subdomains for 12 processes

The data mesh xold

The data mesh xnew
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xold, halos & boundary conditions 

distributed on 

3x4=12 MPI processes

Communication: Send inner data    into halo storage

One iteration in the

serial code:

– xnew = function(xold)

– xold = xnew

Boundary conditions

Boundary conditions

xold & boundary conditions 

distributed on 
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function(xold)  Xnew

Boundary conditions

Boundary conditions

parallel code:

– Update halo

[=Communication, e.g., with

4 x MPI_Sendrecv ]

Preparing the domain decomposition
of the data mesh into 

3x4 subdomains for 12 processes
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xold, halos & boundary conditions 

distributed on 

3x4=12 MPI processes

Communication: Send inner data    into halo storage

One iteration in the

serial code:

– xnew = function(xold)

– xold = xnew

Boundary conditions

Boundary conditions

xold & boundary conditions 

distributed on 

3x4=12 MPI processes

xnew, distributed on same 

MPI processes

function(xold)  Xnew

Boundary conditions

Boundary conditions

parallel code:

– Update halo

[=Communication, e.g., with

4 x MPI_Sendrecv ]

– xnew = function(xold )
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of the data mesh into 
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– xnew = function(xold)
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Boundary conditions
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ib_global = 0;   ie_global=n-1;   // global xold, xnew: arrays with n elements and indexes 0 .. n-1

for(….)  / e.g. timesteps

{ 

numerical_func( xold, xnew, ib_global, ie_global);

tmp=xold;   xold=xnew;   xnew=tmp;  // exchanging role of xold and xnew

}

Example code New slide that the participants
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ib_global = 0;   ie_global=n-1;   // global xold, xnew: arrays with n elements and indexes 0 .. n-1

for(….)     / e.g. timesteps

{ 

numerical_func( xold, xnew, ib_global, ie_global);

tmp=xold;   xold=xnew;   xnew=tmp;  // exchanging role of xold and xnew

}

Example code

ib_global = 0;   ie_global=n-1;   // global xold, xnew: arrays with n elements and indexes 0 .. n-1

MPI_Init(null, null); 

MPI_Comm_size(MPI_COMM_WORLD, &size);        // size = number of processes

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);  // myrank = index of the process from 0 to size-1

n/size

ib_local =        ib_global +       myrank * ( (ie_global-ib_global)/size +1 );

ie_local = min(ib_global + (myrank+1) * ( (ie_global-ib_global)/size +1 ),  ie_global);

left =  (myrank-1 + size) % size;    right = (myrank+1) % size; // neighbor ranks

for(….)    // e.g. timesteps

{ MPI_Sendrecv( /*sndbuf*/ xold, 1, right_black_part,  right, 111,

/*rcvbuf */ xold, 1, left_blue_halo,  left,   111, …);

MPI_Sendrecv( /*sndbuf*/ xold, 1, left_black_part,    left,   222,

/*rcvbuf */ xold, 1, right_blue_halo, right, 222, …);

numerical_func( xold, xnew, ib_global ib_local, ie_global ie_local);

tmp=xold;   xold=xnew;   xnew=tmp;  // exchanging role of xold and xnew

}

ib_local ie_local

To prohibit modulo of negative number

New slide that the participants
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Exercise 2: Calculating the size of the subdomains

Goal: Divide a given amount of mesh elements in one dimension into subdomains

• Given: – The number of processes: num_procs (e.g., 4, i.e., 4 subdomains)

– The number of mesh elements: n (e.g., 17 or 5)

– The numerical workload of each element is identical

– The mesh elements are numbered from 0 to n-1
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Corrections from 2021

Text copied from Ch.1, Exe.1Slide 37
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Exercise 2: Calculating the size of the subdomains

Goal: Divide a given amount of mesh elements in one dimension into subdomains

• Given: – The number of processes: num_procs (e.g., 4, i.e., 4 subdomains)

– The number of mesh elements: n (e.g., 17 or 5)

– The numerical workload of each element is identical

– The mesh elements are numbered from 0 to n-1

• Two possible solutions: (A) 17=5+5+5+2  or 5=2+2+1+0
(B) 17=5+4+4+4  or 5=2+1+1+1
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Exercise 2: Calculating the size of the subdomains

Goal: Divide a given amount of mesh elements in one dimension into subdomains

• Given: – The number of processes: num_procs (e.g., 4, i.e., 4 subdomains)

– The number of mesh elements: n (e.g., 17 or 5)

– The numerical workload of each element is identical

– The mesh elements are numbered from 0 to n-1

• Two possible solutions: (A) 17=5+5+5+2  or 5=2+2+1+0
(B) 17=5+4+4+4  or 5=2+1+1+1

• Output should be like (with B)

I am process 1 out of 4, responsible for the 4 elements with indexes   5 ..  8

I am process 0 out of 4, responsible for the 5 elements with indexes   0 .. 4

I am process 3 out of 4, responsible for the  4 elements with indexes 13 .. 16

I am process 2 out of 4, responsible for the  4 elements with indexes 9 .. 12

Or -1 if 0 elements
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Exercise 2: Calculating the size of the subdomains

Goal: Divide a given amount of mesh elements in one dimension into subdomains

• Given: – The number of processes: num_procs (e.g., 4, i.e., 4 subdomains)

– The number of mesh elements: n (e.g., 17 or 5)

– The numerical workload of each element is identical

– The mesh elements are numbered from 0 to n-1

• Two possible solutions: (A) 17=5+5+5+2  or 5=2+2+1+0
(B) 17=5+4+4+4  or 5=2+1+1+1

• Output should be like (with B)

I am process 1 out of 4, responsible for the 4 elements with indexes   5 ..  8

I am process 0 out of 4, responsible for the 5 elements with indexes   0 .. 4

I am process 3 out of 4, responsible for the  4 elements with indexes 13 .. 16

I am process 2 out of 4, responsible for the  4 elements with indexes 9 .. 12

• Use: C/Ch1/first-dd-a.c and  C/Ch1/first-dd-b.c
or F_30/Ch1/first-dd-a_30.f90 and  F_30/Ch1/first-dd-b_30.f90
or PY/Ch1/first-dd-a_30.py and  PY/Ch1/first-dd-b_30.py

• Test both programs with 4 processes and 9, 8, 7, … 1 elements

Or -1 if 0 elements
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In MPI/tasks/…
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Exercise 2: Calculating the size of the subdomains

Goal: Divide a given amount of mesh elements in one dimension into subdomains

• Given: – The number of processes: num_procs (e.g., 4, i.e., 4 subdomains)

– The number of mesh elements: n (e.g., 17 or 5)

– The numerical workload of each element is identical

– The mesh elements are numbered from 0 to n-1

• Two possible solutions: (A) 17=5+5+5+2  or 5=2+2+1+0
(B) 17=5+4+4+4  or 5=2+1+1+1

• Output should be like (with B)

I am process 1 out of 4, responsible for the 4 elements with indexes   5 ..  8

I am process 0 out of 4, responsible for the 5 elements with indexes   0 .. 4

I am process 3 out of 4, responsible for the  4 elements with indexes 13 .. 16

I am process 2 out of 4, responsible for the  4 elements with indexes 9 .. 12

• Use: C/Ch1/first-dd-a.c and  C/Ch1/first-dd-b.c
or F_30/Ch1/first-dd-a_30.f90 and  F_30/Ch1/first-dd-b_30.f90
or PY/Ch1/first-dd-a_30.py and  PY/Ch1/first-dd-b_30.py

• Test both programs with 4 processes and 9, 8, 7, … 1 elements

Which algorithm would you prefer, and why?

Which are the major principles of A and B?

Or -1 if 0 elements
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Collective Communications

• Collective communication routines are higher level routines.

• Several processes are involved at a time.

• May allow optimized internal implementations, e.g., tree based algorithms.

• Can be built out of point-to-point communications.
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Broadcast

• A one-to-many communication.
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Reduction Operations

• Combine data from several processes to produce a single result.

200

300

15

30

10

sum=?

Slide 41



/ 644

Barriers

• Synchronize processes.
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Barriers

• Synchronize processes.

all here?
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Parallel File I/O

Supercomputing

computation

communication

I/O

Corrections from 2022
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Parallel File I/O

Supercomputing

computation

communication

I/O

calculation on time for computation time for serial I/O

1 core

= sequentiel

64 min

= 98.5 % of total time

1 min

= 1.5 % of total time

64 cores

= in parallel

1 min

= 50 % of total time

1 min 

= 50 % of total time

Table: example with serial I/O

Corrections from 2022
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Parallel File I/O
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computation

communication

I/O

calculation on time for computation time for serial I/O

1 core

= sequentiel

64 min

= 98.5 % of total time

1 min

= 1.5 % of total time

64 cores

= in parallel

1 min

= 50 % of total time

1 min 

= 50 % of total time

Table: example with serial I/O
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Speedup, Efficiency, Scaleup, and Weak Scaling
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• Definition: T(p,N) = time to solve problem of total size N on p processors

• Parallel speedup: S(p,N) = T(1,N) / T(p,N)

compute same problem with more processors in shorter time

• Parallel Efficiency: E(p,N) = S(p,N) / p

Three different ways of 

reporting the success 
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• Definition: T(p,N) = time to solve problem of total size N on p processors

• Parallel speedup: S(p,N) = T(1,N) / T(p,N)

compute same problem with more processors in shorter time

• Parallel Efficiency: E(p,N) = S(p,N) / p

• Scaleup: Sc(p,N) = N / n    with  T(1,n) = T(p,N)

compute larger problem with more processors in same time

Three different ways of 

reporting the success 

Slide 44



/ 644

Speedup, Efficiency, Scaleup, and Weak Scaling
S

p
e
e
d
u
p
 &

  
A

m
d
a
h
l’s

 L
a
w

• Definition: T(p,N) = time to solve problem of total size N on p processors

• Parallel speedup: S(p,N) = T(1,N) / T(p,N)

compute same problem with more processors in shorter time

• Parallel Efficiency: E(p,N) = S(p,N) / p

• Scaleup: Sc(p,N) = N / n    with  T(1,n) = T(p,N)

compute larger problem with more processors in same time

• Weak scaling: T(p, p•n) / T(1,n) is reported,

i.e., problem size per process (n) is fixed

Three different ways of 
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Speedup, Efficiency, Scaleup, and Weak Scaling
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• Definition: T(p,N) = time to solve problem of total size N on p processors

• Parallel speedup: S(p,N) = T(1,N) / T(p,N)

compute same problem with more processors in shorter time

• Parallel Efficiency: E(p,N) = S(p,N) / p

• Scaleup: Sc(p,N) = N / n    with  T(1,n) = T(p,N)

compute larger problem with more processors in same time

• Weak scaling: T(p, p•n) / T(1,n) is reported,

i.e., problem size per process (n) is fixed

• Problems:

– Absolute MFLOPS rate / hardware peak performance?

– Super-scalar speedup:  S(p,N)>p, e.g., due to cache*) usage for large p:

• T(1,N) may be based on a huge number of N data elements in the memory in the one process,

whereas

• T(p,N) may be based on cache based execution due to only N/p data elements per process

– S(p,N) close to p or far less?  see Amdahl’s Law on next slide

Three different ways of 

reporting the success 
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Amdahl’s Law

T(p,N) = f·T(1,N)  +  (1-f)·T(1,N) / p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = 1 / (f + (1-f) / p)

For p —> infinity,  speedup is limited by S(p,N) < 1 / f
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S(p,N) = p (ideal speedup)

f=0.1%  =>  S(p,N) < 1000

f=   1%  =>  S(p,N) < 100

f=   5%  =>  S(p,N) < 20

f= 10%  =>  S(p,N) < 10
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Amdahl’s Law  (double-logarithmic)

T(p,N) = f·T(1,N)  +  (1-f)·T(1,N) / p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = 1 / (f + (1-f) / p)

For p —> infinity,  speedup is limited by S(p,N) < 1 / f
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f=0.1%  =>  S(p,N) < 1000

f=   1%  =>  S(p,N) < 100

f=   5%  =>  S(p,N) < 20

f= 10%  =>  S(p,N) < 10
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Quiz on Chapter 1 – Overview

Two developers report about their limited success when parallelizing an application:

A. “My application is now running in parallel with 1000 MPI processes and my major limiting

factor for scaling is

– that I need about 90% of the whole compute time for MPI communication.”

B. “My application is now running in parallel with 1000 MPI processes and my major limiting

factor for scaling is

– that I could not parallelize about 10% of the execution time of my sequential program.”

What are your answers for

• In your opinion, who was more successful, A or B, or both almost equally?

• Can you calculate an estimate for the parallel efficiency of the parallel run reported

by A and B?
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