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Collective Communication

• Communications involving a group of processes.

• Called by all processes in a communicator.

• Examples:

– Barrier synchronization.

– Broadcast, scatter, gather.

– Global sum, global maximum, etc.

– Neighbor communication in a virtual process grid
New in MPI-3.0
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– Neighbor communication in a virtual process grid
New in MPI-3.0
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any programming 
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Internally: tree-based algorithms

E.g., broadcast
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Characteristics of Collective Communication

• Collective action over a communicator.

• All process of the communicator must communicate,

i.e., must call the collective routine.

• Synchronization may or may not occur,

therefore all processes must be able

to start the collective routine.
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Characteristics of Collective Communication

• Collective action over a communicator.

• All process of the communicator must communicate,

i.e., must call the collective routine.

• Synchronization may or may not occur,

therefore all processes must be able

to start the collective routine.

• On a given communicator,

the n-th collective call must match

on all processes of the communicator.

• In MPI-1.0 – MPI-2.2, all collective operations are blocking.

Nonblocking versions since MPI-3.0.

• No tags.

• For each message, the amount of data sent must exactly match the amount 

of data specified by the receiver

 It is forbidden to provide receive buffer count arguments

that are too long (and also too short, of course)
Exception with Python (mpi4py): if a buffer argument represents #processes of messages (e.g. snd_buf in comm.Scatter) 

and the argument count is to be derived from the buffer argument (i.e. is not explicitly defined in the argument list), then this 

count argument is derived from the inferred number of elements of the buffer divided by the size of the communicator. 

1st

2nd

3rd

4th call

rank =  0    1    2    3

tim
e

very important

e.g., when passing snd_buf, or (snd_buf, datatype).
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Barrier Synchronization

• C/C++: int MPI_Barrier(MPI_Comm comm)

• Fortran: MPI_BARRIER(comm, ierror)
mpi_f08: TYPE(MPI_Comm) :: comm ;   INTEGER, OPTIONAL :: ierror

mpi & mpif.h: INTEGER  comm, ierror

• Python: comm.Barrier()  or comm.barrier()

• MPI_Barrier is normally never needed:

– all synchronization is done automatically by the data communication:
• a process cannot continue before it has the data that it needs.

C

Fortran

Python
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Barrier Synchronization

• C/C++: int MPI_Barrier(MPI_Comm comm)

• Fortran: MPI_BARRIER(comm, ierror)
mpi_f08: TYPE(MPI_Comm) :: comm ;   INTEGER, OPTIONAL :: ierror

mpi & mpif.h: INTEGER  comm, ierror

• Python: comm.Barrier()  or comm.barrier()

• MPI_Barrier is normally never needed:

– all synchronization is done automatically by the data communication:
• a process cannot continue before it has the data that it needs.

– if used for debugging:
• please guarantee, that it is removed in production.

– for profiling: to separate time measurement of
• Load imbalance of computation  [ MPI_Wtime(); MPI_Barrier(); MPI_Wtime() ]

• communication epochs  [ MPI_Wtime(); MPI_Allreduce();  …;   MPI_Wtime() ]

– if used for synchronizing external communication (e.g. I/O):
• exchanging tokens may be more efficient and scalable

than a barrier on MPI_COMM_WORLD,

• see also advanced exercise of this course chapter.

C

Fortran

Python
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Broadcast

• C/C++: int MPI_Bcast(void *buf, int count, MPI_Datatype datatype,

int root, MPI_Comm comm)

• Fortran: MPI_BCAST(buf, count, datatype, root, comm, ierror)
mpi_f08: TYPE(*), DIMENSION(..) :: buf

TYPE(MPI_Datatype) :: datatype; TYPE(MPI_Comm) :: comm

INTEGER :: count, root;  INTEGER, OPTIONAL :: ierror

mpi & mpif.h: <type> buf(*);  INTEGER count, datatype, root, comm, ierror

• Python: comm.Bcast(buf, int root=0)   or comm.bcast(obj, int root=0)

r e d
before

bcast

after

bcast

e.g., root=1

r e d

• rank of the sending process (i.e., root process)

• must be given identically by all processes

Example:

MPI_Bcast(buf, 3, MPI_CHAR, 1, MPI_COMM_WORLD);

C

Fortran

Python

Slide 166



/ 644

Broadcast
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Example:
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C
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Scatter

C/C++: int MPI_Scatter(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount,  MPI_Datatype recvtype, 
int root, MPI_Comm comm)

For: MPI_SCATTER(sendbuf, sendcount, sendtype, 
recvbuf, recvcount,  recvtype,  root, comm, ierror) 

mpi_f08: TYPE(*), DIMENSION(..) :: sendbuf, recvbuf; INTEGER :: sendcount, recvcount, root;
TYPE(MPI_Datatype) :: sendtype, recvtype; TYPE(MPI_Comm) :: comm;   INTEGER, OPTIONAL :: ierror

mpi & mpif.h: <type> sendbuf(*), recvbuf(*); INTEGER sendcount, sendtype, recvcount, recvtype, root, comm, ierror

Python comm.Scatter(sendbuf or None, recvbuf, int root=0)
recvobj = comm.scatter(sendobj or None, int root=0)

ABCDE

ABCDE

before

scatter

after

scatter

Feb 18, 2021

Corrections

C

Fortran

Python
See, e.g., Tutorial — MPI for Python 3.1.1 

documentation (mpi4py.readthedocs.io)

e.g., root=1 (=rank of this root process)
Corrections from 2021

Slide 167



/ 644

Scatter

C/C++: int MPI_Scatter(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount,  MPI_Datatype recvtype, 
int root, MPI_Comm comm)

For: MPI_SCATTER(sendbuf, sendcount, sendtype, 
recvbuf, recvcount,  recvtype,  root, comm, ierror) 

mpi_f08: TYPE(*), DIMENSION(..) :: sendbuf, recvbuf; INTEGER :: sendcount, recvcount, root;
TYPE(MPI_Datatype) :: sendtype, recvtype; TYPE(MPI_Comm) :: comm;   INTEGER, OPTIONAL :: ierror

mpi & mpif.h: <type> sendbuf(*), recvbuf(*); INTEGER sendcount, sendtype, recvcount, recvtype, root, comm, ierror

Python comm.Scatter(sendbuf or None, recvbuf, int root=0)
recvobj = comm.scatter(sendobj or None, int root=0)

ABCDE

ABCDE

before

scatter

after

scatter B C D EA

Feb 18, 2021

Corrections

C

Fortran

Python
See, e.g., Tutorial — MPI for Python 3.1.1 

documentation (mpi4py.readthedocs.io)

e.g., root=1 (=rank of this root process)
Corrections from 2021

Sorted in the order of the ranks
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Scatter

C/C++: int MPI_Scatter(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount,  MPI_Datatype recvtype, 
int root, MPI_Comm comm)

For: MPI_SCATTER(sendbuf, sendcount, sendtype, 
recvbuf, recvcount,  recvtype,  root, comm, ierror) 
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Python comm.Scatter(sendbuf or None, recvbuf, int root=0)
recvobj = comm.scatter(sendobj or None, int root=0)

ABCDE

ABCDE

before

scatter

after

scatter B C D EA

Example: MPI_Scatter(sbuf, 1, MPI_CHAR,  rbuf, 1, MPI_CHAR, 1,  MPI_COMM_WORLD);

Completely ignored at all 

processes except root

Feb 18, 2021

sendcount describes only one message

Corrections

C

Fortran

Python
See, e.g., Tutorial — MPI for Python 3.1.1 

documentation (mpi4py.readthedocs.io)

e.g., root=1 (=rank of this root process)
Corrections from 2021

Sorted in the order of the ranks
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Gather

C/C++ int MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount,  MPI_Datatype recvtype, 
int root, MPI_Comm comm)

Fort. MPI_GATHER(sendbuf, sendcount, sendtype, 
recvbuf, recvcount, recvtype, root, comm, ierror) 

mpi_f08: TYPE(*), DIMENSION(..) :: sendbuf, recvbuf; INTEGER :: sendcount, recvcount, root;
TYPE(MPI_Datatype) :: sendtype, recvtype; TYPE(MPI_Comm) :: comm;  INTEGER, OPTIONAL :: ierror

mpi & mpif.h: <type> sendbuf(*), recvbuf(*);  INTEGER sendcount, sendtype, recvcount, recvtype, root, comm, ierror

Python comm.Gather(sendbuf, recvbuf or None, int root=0)   or
recvobj = comm.gather(sendobj, int root=0)

B

B

C

C

D

D

E

E

A

A

before

gather

after

gather

e.g., root=1 (=rank of this root process)

Feb 18, 2021

Corrections

See, e.g., Tutorial — MPI for Python 3.1.1 

documentation (mpi4py.readthedocs.io)

C

Fortran

Python

Corrections from 2021
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Gather
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Feb 18, 2021
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Gather
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recvcount describes only one message
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Exercise 1  — Gather

• Use           C/Ch6/gather-skel.c or               F_30/Ch6/gather-skel_30.f90

or PY/Ch6/gather-skel.py  (hint: use Gather, i.e. with numPy buffers)

• The skeleton is based on our first example in course Chapter 1.

• Differences:

– This skeleton first gathers the data into an array at process 0

– And then, process 0 prints the array.

• In this exercise, you should substitute the point-to-point communication

by one call to MPI_Gather

• Hint for

– The result_array (used in MPI_Gather) needs to be declared on all processes.

Therefore add “else: result_array = None”

if (my_rank == 0):

result_array = np.empty(num_procs, dtype=np.double)

else:

result_array = None

C Fortran

E
x
e
rc

is
e
 1

Python

In MPI/tasks/… Corrections from 2021
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Advanced Exercise 1b  — Barrier / profiling

• Based on  C/Ch6/solutions/pi.c  pi-mpi.c  pi-mpi-inbalance.c

• Use           C/Ch6/pi-mpi-inbalance-profiling-skel.c

or           PY/Ch6/pi-mpi-inbalance-profiling-skel.py

or (my apologies, Fortran does not yet exists, but this shouldn’t be a problem)

• This program has several parts:
– Perfect work-distribution for n=10,000,000 intervals.

– If 3 or more processes:

Introducing an inbalance: The last 2 processes get double and zero intervals.

– Calculation of π with a distributed integral  partial sums in p_sum.

– Global reduction of all p_sum into one global sum.

– Time measurements for all parts

• Your task, see “// EXERCISE” in the skeleton:
– Add MPI_Barrier wherever useful, and especially to measure idle time due to the

bad load balance.
– Substitute all wt? by wt1 .. wt4 as needed

– Compile and run it with 2 processes

 expected result 99,9% parallel efficiency

– Run with more than 3 processes

 about 50% parallel efficiency and 50% in idle time

A
d
v
a
n
c
e
d
 E

x
e
rc

is
e
 1

b

balanced inbalanced
C

Fortran

Python
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Global Reduction Operations

• To perform a global reduce operation across all members of a group.

• d0 o d1 o d2 o d3 o … o ds-2 o ds-1

– di = data in process rank i
• single variable, or

• vector

– o = associative operation

– Example:
• global sum or product

• global maximum or minimum

• global user-defined operation

Slide 172
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Global Reduction Operations

• To perform a global reduce operation across all members of a group.

• d0 o d1 o d2 o d3 o … o ds-2 o ds-1

– di = data in process rank i
• single variable, or

• vector

– o = associative operation

– Example:
• global sum or product

• global maximum or minimum

• global user-defined operation

• floating point rounding may depend on usage of associative law:

– [(d0 o d1) o (d2 o d3)] o [… o (ds-2 o ds-1)]

– ((((((d0 o d1) o d2) o d3) o … ) o ds-2) o ds-1)

– May be even worse through partial sums in each process:

σ𝑖=0
𝑛−1 𝑥𝑖  [[[(σ𝑖=0

𝑛/𝑠−1
𝑥𝑖 o σ𝑖=𝑛/𝑠

2𝑛/𝑠−1
𝑥𝑖) o (… o …)] o [… o (… o …)]]]

E.g., with n=108 rounding errors may

modify last 3 or 4 digits!
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Example of Global Reduction

• Global integer sum.

• Sum of all inbuf values should be returned in resultbuf.

• C/C++: root=0;

MPI_Reduce(&inbuf, &resultbuf, 1, MPI_INT,

MPI_SUM, root, MPI_COMM_WORLD);

• Fortran: root=0

CALL MPI_REDUCE(inbuf, resultbuf, 1, MPI_INTEGER, 

MPI_SUM, root, MPI_COMM_WORLD, IERROR)

• Python: comm_world = MPI.COMM_WORLD

snd_buf = np.array(value, dtype=np.intc)

resultbuf = np.empty((), dtype=np.intc)

comm_world.Reduce(snd_buf, resultbuf, op=MPI.SUM)

• The result is only placed in resultbuf at the root process.

C

Fortran

Python
op=MPI.SUM

and root=0

are defaults

Corrections fro. 2022
ierror
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Predefined Reduction Operation Handles

Predefined operation handle Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum and location of the maximum

MPI_MINLOC Minimum and location of the minimum
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MPI_Reduce

before MPI_Reduce

• inbuf

• result
A B C D E F GH I J K L MNO

A B C D E F GH I J K L MNO

root=1

after
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User-Defined Reduction Operations

• Operator handles

– predefined  – see table above

– user-defined

• User-defined operation □:

– associative

– user-defined function must perform the operation vector_A □ vector_B

– syntax of the user-defined function  MPI standard

• Registering a user-defined reduction function:

– C/C++: MPI_Op_create(MPI_User_function *func, int commute,

MPI_Op *op)

– Fortran: MPI_OP_CREATE(FUNC, COMMUTE, OP, IERROR)

– Python: op = MPI.Op.Create(func, commute=True  or False)

• COMMUTE tells the MPI library whether FUNC is commutative.

C

Fortran

Python
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Variants of Reduction Operations

• MPI_Allreduce

– no root,

– returns the result in all processes

• MPI_Reduce_scatter_block and MPI_Reduce_scatter

– result vector of the reduction operation

is scattered to the processes into the

real result buffers

• MPI_Scan

– prefix reduction

– result at process with rank i :=

reduction of inbuf-values from rank 0 to rank i

• MPI_Exscan

– result at process with rank i :=

reduction of inbuf-values from rank 0 to rank i-1

New in MPI-2.2

B

A

C

A2 C2B2

A1 C1B1

A3 C3B3

array

p
ro

c
e

s
s

ra
n

k
s
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MPI_Allreduce

before MPI_Allreduce

• inbuf

• result
A B C D E F GH I J K L MNO

A B C D E F GH I J K L MNO

o o o o

AoDoGoJoM

after
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Interface of MPI_Allreduce

Language 

independent 

specification 

(LIS)

C/C++ binding

mpi_f08

Module

Fortran binding

mpi module + 

mpif.h

Fortran binding

Slide 179
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C

Fortran

Python Python: win = comm.Allreduce(sendbuf, recvbuf, op)

numpy arrays, e.g.,
sendbuf,(recvbuf,1,MPI.INT)

op=MPI.SUM is the default

Overloaded with 
INTEGER(KIND=MPI_COUNT_KIND)

version since MPI-4.0

Additional MPI_Count

version since MPI-4.0: 

MPI_Allreduce_c

Corrections fro. 2024
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MPI_Scan and  MPI_Exscan

before the call
rank=0  1  2  3  4

• inbuf

• result
A B C D E F GH I J K L MNO

A B C D E F GH I J K L MNO
after

MPI_Scan: 
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MPI_Scan and  MPI_Exscan

before the call
rank=0  1  2  3  4

• inbuf

• result
A B C D E F GH I J K L MNO

A B C D E F GH I J K L MNO

o o o o

after

A AoDoGoJoMAoDoGoJAoDoGAoD

done in parallel

MPI_Scan: 

- AoDoGoJAoDoGAoDAMPI_Exscan: 
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Other Collective Communication Routines

• MPI_Allgather  similar to MPI_Gather,

but all processes receive 

the result vector

A CBB

A CBA

A CBC
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Other Collective Communication Routines

• MPI_Allgather  similar to MPI_Gather,

but all processes receive 

the result vector

• MPI_Alltoall  each process sends

messages to all processes

• MPI_.......…v  (Gatherv,  Scatterv,  Allgatherv,  Alltoallv, Alltoallw)

 Each message has a different count and displacement

 array of counts and array of displs (Alltoallw: also array of types)

 interface does not scale to thousands of MPI processes!

 Recommendation: One should try to use data structures with same

communication size on all ranks.

A CBB

A CBA

A CBC

B1 B3B2

A1 A3A2

C1 C3C2

A2 C2B2

A1 C1B1

A3 C3B3
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Exercise 2  — Global reduction 

• Rewrite the pass-around-the-ring program to use the MPI global reduction to

perform the global sum of all ranks of the processes in the ring (and print it

from all processes).

• Use           C/Ch6/allreduce-skel.c or              F_30/Ch6/allreduce-skel_30.f90

or PY/Ch6/allreduce-skel.py

• I.e., the pass-around-the-ring communication loop must be totally substituted

by one call to the MPI collective reduction routine.

• For the argument list, of MPI_Allreduce, please look into the MPI standard:

– Go to the end of the standard (=end of the MPI function index of MPI-4.0)

– Go backward in the alphabet to MPI_Allreduce

– Click on the underlined reference

• MPI_Allreduce ….., 239, …… (in MPI-4.0)

….., 187, …… (in MPI-3.1)

– Python: see also, e.g., mpi4py.MPI.Comm — MPI for Python 3.1.1 documentation

• Specify sum in the same way as the rcv_buf in the ring algorithm

E
x
e
rc

is
e
 2

C Fortran

Python
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Advanced Exercises  — Global scan and sub-groups

1. Global scan:

– Rewrite the last program so that each process computes a partial sum,
i.e., with MPI_Scan().

– mpirun -np  5  ./a.out | sort  -n  to get the output sorted by the ranks:
rank=  0   sum=0
rank=  1   sum=1
rank=  2   sum=3
rank=  3   sum=6
rank=  4   sum=10

Corrections fro. 2022

–
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Quiz on Chapter 6-(1) – Collective communication

• Why should you use MPI collective routines?

– __________________________________________

• MPI Collective communication: Which are the major rules when using collective

communication routines and that do not apply to point to point communication?

Please try to find at least two or three:

1. _________________

2. _________________

3. _________________

4. _________________

5. _________________
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Nonblocking Collective Communication Routines

• MPI_I.......… Nonblocking variants of all collective communication:

MPI_Ibarrier, MPI_Ibcast, …

New in MPI-3.0

local
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Nonblocking Collective Communication Routines

• MPI_I.......… Nonblocking variants of all collective communication:

MPI_Ibarrier, MPI_Ibcast, …

• Nonblocking collective operations do not match with blocking collective operations

• Collective initiation and completion are separated

• MPI_I… calls are local (i.e., not synchronizing),

whereas the corresponding MPI_Wait collectively synchronizes

in same way as corresponding blocking collective procedure

• May have multiple outstanding collective communications on same communicator

• Ordered initialization on each communicator

• Parallel MPI I/O (except with shared file pointer):
The split collective interface may be deprecated in a future version of MPI

New in MPI-3.0

With point-to-point message passing, 
such matching is allowed

New in MPI-3.1

local
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General progress rule of MPI

• MPI is mainly defined in a way that progress on communication (and …)

is required only during MPI procedure calls.

• But then, progress is required
– for all outstanding (incomplete/nonblocking) communications

– together with operation of the current communication (…) procedure call.
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General progress rule of MPI

• MPI is mainly defined in a way that progress on communication (and …)

is required only during MPI procedure calls.

• But then, progress is required
– for all outstanding (incomplete/nonblocking) communications

– together with operation of the current communication (…) procedure call.

• See, e.g., in MPI-4.0
– Sect. 3.5, page 54, and 3.7.4, page 75; Paragr.s “Progress”, esp. progress of repeated MPI_Test, p.7538-40

– Sect. 3.8.1 and 3.8.2 about MPI_(I)(M)PROBE

– Sect. 3.8.4 Cancel, esp. page 94 lines 8-16  &  MPI_Finalize Example 11.6, page 49626-48

&  MPI_Session_finalize, esp. page 50330-47 and Example 11.8 on page 804

– Sect. 4.2.2 MPI_Parrived: Same progress rule as for repeated MPI_Test, see page 11131-34

– Sect. 5.12: Nonblocking collectives: Same rules as for nonblocking pt-to-pt

– Sect. 12.7.3: Progress with one-sided communication, especially the rationale at the end

– Sect. 11.6: MPI and Threads

– Sect. 14.6.3: Progress with MPI-I/O
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• Non of these rules require progress outside of called MPI routines,

– But MPI_Test and each MPI routine that blocks must do progress

on any ongoing (i.e. nonblocking) communication
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• Non of these rules require progress outside of called MPI routines,

– But MPI_Test and each MPI routine that blocks must do progress

on any ongoing (i.e. nonblocking) communication

• Additional progress

– By several calls to MPI_Test(), which enables progress
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• Non of these rules require progress outside of called MPI routines,

– But MPI_Test and each MPI routine that blocks must do progress
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• Additional progress

– By several calls to MPI_Test(), which enables progress

– Use non-standard extensions to switch on asynchronous progress

o E.g., with MPICH:

export MPICH_ASYNC_PROGRESS=1

Implies a helper thread and 

MPI_THREAD_MULTIPLE
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Opportunities with Nonblocking Collectives

• Offers opportunity to overlap
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Opportunities with Nonblocking Collectives

• Offers opportunity to overlap

– several collective communications,

e.g., on several overlapping communicators
• Without deadlocks or serializations!

• • • • • • • •
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• • • • • • • •
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Opportunities with Nonblocking Collectives

• Offers opportunity to overlap

– several collective communications,

e.g., on several overlapping communicators
• Without deadlocks or serializations!

– computation and communication

• For this, progress is needed

• See previous slide

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
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Nonblocking Barrier: 

Functional Opportunities – an Example

• The receiver

– needs information and

– does not know the sending processes nor the number of sending processes (nsp)

– and this number is small compared to the total number.

– The sender knows all its neighbors, which need some data.

• Non-scalable solution to exchange number of neighbors:
– MPI_Alltoall, MPI_Reduce_scatter (array with one logical entry per process)

– Each sender tells all processes whether they will get a message or not.

• For the example with MPI_Ibarrier on next slide, we also need the following local inquiry procedure:

– MPI_Iprobe(int source,  int tag,  MPI_Comm comm,  int *flag,  MPI_Status *status);

Python: flag = comm.Iprobe(source, tag, status)

– Result: flag == non-zero  or  .TRUE.  a message arrived and can be received with a local MPI_Recv,
i.e., a subsequent corresponding MPI_Recv will not block

 currently no incoming message with given source rank & tag & commflag == 0 or .FALSE.

0

2

1

3
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Principles:

1. Ssend

reports to

the sender

that Recv is

called on

the other

side.

2. Ibarrier

completes

when all

processes

reported (by

starting the

Ibarrier)

that all their

Ssend calls

are received

on their

other sides,

i.e., comple-

tely all Recv

calls are

called.

Nonblocking Barrier: 

Functional Opportunities – an Example
• The receiver  (a) needs information, and  (b) does not know the sending processes nor the

number of sending processes (nsp), and  (c) this number is small compared to the total number, and

(d) The sender knows all its neighbors, which need some data.

• Solution with nonblocking barrier:
– Each process as a sender

• Loop over its neighbors, sending the data with MPI_ISSEND

– LOOP

• Process in the role being a receiver:

MPI_Iprobe(MPI_ANY_SOURCE,…); If there is a message then MPI_Recv for this one msg

• Process in the role being a sender:

Check whether all Issend calls are completed

 then start MPI_Ibarrier to signal to all other processes

that all MPI_Issend of this process are already received

(i.e. the corresponding MPI_Recv is already called)

– UNTIL MPI_Ibarrier completed (i.e. all processes signaled that all receives are called)

0

2

1

3

Apr 29, 2016 New slide

Important: The S=synchronous reports back 

to the sender that the RECV is called!
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Collective Operations for Intercommunicators

• In MPI-1, collective operations are restricted to

ordinary (intra) communicators.

• In MPI-2, most collective operations are extended by

an additional functionality for intercommunicators

– e.g., Bcast on a parents-children intercommunicator:

sends data from one parent process to all children.

• Intercommunicators do not apply in

– MPI_Scan, MPI_Iscan, MPI_Exscan, MPI_Iexscan,

– MPI_(I)Neighbor_allgather(v)

– MPI_(I)Neighbor_alltoall(v,w)
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Sparse Collective Operations on Process Topology

• MPI process topologies (Cartesian and (distributed) graph) usable for 
communication

– MPI_(I)NEIGHBOR_ALLGATHER(V)

– MPI_(I)NEIGHBOR_ALLTOALL(V,W)

• If the topology is the full graph, then neighbor routine is identical to full 
collective communication routine

– Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint

• Allows for optimized communication scheduling and scalable resource 
binding

• Cartesian topology:

– Sequence of buffer segments is communicated with:

• direction=0 source, direction=0 dest, direction=1 source, direction=1 
dest, …

– Defined only for disp=1

– If a source or dest rank is MPI_PROC_NULL then the buffer location 
is still there but the content is not touched.

New in MPI-3.0

because both (I)Neighbor and
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Extended Collective Operations   — “In place” Buffer Specification

The MPI_IN_PLACE has two meanings:

• to prohibit the local copy with
 sendbuf=MPI_IN_PLACE:

– (I)GATHER(V) at root process

– (I)ALLGATHER(V) at all processes

 recvbuf=MPI_IN_PLACE:

– (I)SCATTER(V) at root process

• to overwrite input buffer with the result:
(sendbuf=MPI_IN_PLACE, input is taken

from recvbuf, which is then overwitten)

– (I)REDUCE at root

– (I)ALLREDUCE, (I)REDUCE_SCATTER(_BLOCK), (I)SCAN, (I)EXSCAN, (I)ALLTOALL(V,W)

at all processes

• Not available for

– (I)BARRIER, (I)BCAST, (I)NEIGHBOR_ALLGATHER/ALLTOALL(V,W)

• Python: the constant is MPI.IN_PLACE

B

C

C

D

D

E

E

A

A

before

gather

after

gather ABCDE

MPI_IN_

PLACE

MPI_IN_
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send 
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Corrections from 2021
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Exercise 3  — nonblocking barrier

• Use      C/Ch6/ibarrier-skel.c or            F_30/Ch6/ibarrier-skel_30.f90
or PY/Ch6/ibarrier-skel.py

• Each process sends 0-4 messages to some other processes (see  number_of_dests).

• The skeletons include already the Issends of these messages.

E
x
e
rc

is
e
 3

C Fortran

Python

In MPI/tasks/…

Corrections from 2021

Corrections fro. 2022

–
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– MPI_Ibarrier(comm, &ib_rq) should be called only once!

– The MPI_Test(&ib_rq, …) can be done only when MPI_Ibarrier is already called  (arguments  )

• Please only fill in the ________ parts. Please do not modify the already given source code.

 (to check whether all messages are received)

    (to sort by processes  / snd/rcv /  partners)

• mpirun -np  4  ./a.out | sort  +0 -1  +6 -7  +4r -5

• mpirun -np 4  ./a.out | sort  +0 -1 +2 -3  +4r -5 +6 -7
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C Fortran

Python

In MPI/tasks/…

Corrections from 2021

Corrections fro. 2022

–
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Exercise  — nonblocking barrier  — solutions

In the Ch6/solutions directory, you find

• ibarrier.c /  _30.f90  /  .py

– the solution for the ../ibarrier-skel.c /  _30.f90  /  .py

• ibarrier-optimized.c /  _30.f90 /  .py

– an optimized  solution that additionally loops over the iprobe & recv

• ibarrier-optimized-test.c /  _30.f90  /  .py

– same, but executes only each 10th iprobe & recv

• ibarrier-wrong.c, ibarrier-optimized-wrong.c, ibarrier-optimized-test-wrong.c / _30.f90 / .py

– All synchronous MPI_Ssend calls are substituted by standard MPI_Send.

– Therefore, the algorithm will start the ibarrier to early.

– And therefore may stop before all messages are received.

– Especially the test version shows always wrong results,

whereas the optimized version may sometimes receive all message by luck.

– Incorrect programs may produce correct results 

 therefore correct results never prove that the program is correct 

Aug 16+Sep 27, 
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Advanced Exercise 4 — MPI_IN_PLACE

• Use      C/Ch6/in-place-skel.c or             F_30/Ch6/in-place-skel_30.f90

• Your tasks:

– Substitute the several  0 by a  root variable initialized with root=0, compile

and run

– Substitute  root=0 by  root=num_procs-1, compile and run

– Modify your program that the MPI_IN_PLACE option is used for MPI_Gather

(read the appropriate paragraph in the MPI description of MPI_Gather),

compile and run

Any significant difference to your solution?

C Fortran
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