
Parallel programming / computation
Sultan ALPAR
s.alpar@iitu.edu.kz

IITU

Lecture 8
Virtual Topologies

Neighborhood communication
Optimization through reordering

pri.note

has

Corrections from 2022

Corrections fro. 2022

Corrections fro. 2022

Corrections

Corrections from 2022

Corr.

Corrections from 2023

Corrections from 2023

Corrections fro. 2024

Corr.

/ 644

Course Chap. 9-(2):

Sparse Collective Operations on Process Topologies

• MPI process topologies (Cartesian and (distributed) graph) usable for
communication

– MPI_(I)NEIGHBOR_ALLGATHER(V)
– MPI_(I)NEIGHBOR_ALLTOALL(V,W)

• If the topology is the full graph, then neighbor routine is identical to full collective
communication routine

– Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint

New in MPI-3.0

= perfect scalable !?

Slide 274

/ 644

Course Chap. 9-(2):

Sparse Collective Operations on Process Topologies

• MPI process topologies (Cartesian and (distributed) graph) usable for
communication

– MPI_(I)NEIGHBOR_ALLGATHER(V)
– MPI_(I)NEIGHBOR_ALLTOALL(V,W)

• If the topology is the full graph, then neighbor routine is identical to full collective
communication routine

– Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint
• Allows for optimized communication scheduling and scalable resource binding

New in MPI-3.0

= perfect scalable !?

Slide 274

/ 644

Course Chap. 9-(2):

Sparse Collective Operations on Process Topologies

• MPI process topologies (Cartesian and (distributed) graph) usable for
communication

– MPI_(I)NEIGHBOR_ALLGATHER(V)
– MPI_(I)NEIGHBOR_ALLTOALL(V,W)

• If the topology is the full graph, then neighbor routine is identical to full collective
communication routine

– Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint
• Allows for optimized communication scheduling and scalable resource binding
• Cartesian topology:

– Sequence of buffer segments is communicated with:
• direction=0 source, direction=0 dest, direction=1 source, direction=1 dest, …

– Defined only for disp=1 (direction, source, dest and disp are defined as in MPI_CART_SHIFT)

New in MPI-3.0

= perfect scalable !?

Slide 274

/ 644

Course Chap. 9-(2):

Sparse Collective Operations on Process Topologies

• MPI process topologies (Cartesian and (distributed) graph) usable for
communication

– MPI_(I)NEIGHBOR_ALLGATHER(V)
– MPI_(I)NEIGHBOR_ALLTOALL(V,W)

• If the topology is the full graph, then neighbor routine is identical to full collective
communication routine

– Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint
• Allows for optimized communication scheduling and scalable resource binding
• Cartesian topology:

– Sequence of buffer segments is communicated with:
• direction=0 source, direction=0 dest, direction=1 source, direction=1 dest, …

– Defined only for disp=1 (direction, source, dest and disp are defined as in MPI_CART_SHIFT)

– If a source or dest rank is MPI_PROC_NULL then the buffer location is still
there but the content is not touched.

New in MPI-3.0

= perfect scalable !?

Slide 274

/ 644

Course Chap. 9-(2):

Sparse Collective Operations on Process Topologies

• MPI process topologies (Cartesian and (distributed) graph) usable for
communication

– MPI_(I)NEIGHBOR_ALLGATHER(V)
– MPI_(I)NEIGHBOR_ALLTOALL(V,W)

• If the topology is the full graph, then neighbor routine is identical to full collective
communication routine

– Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint
• Allows for optimized communication scheduling and scalable resource binding
• Cartesian topology:

– Sequence of buffer segments is communicated with:
• direction=0 source, direction=0 dest, direction=1 source, direction=1 dest, …

– Defined only for disp=1 (direction, source, dest and disp are defined as in MPI_CART_SHIFT)

– If a source or dest rank is MPI_PROC_NULL then the buffer location is still
there but the content is not touched.

– See exercise 5 and advanced exercise 6

New in MPI-3.0

= perfect scalable !?

Slide 274

/ 644

Periodic MPI_NEIGHBOR_ALLTOALL in direction d

with 4 processes

recvbuf[2*d+0] = +400

se
nd

bu
f[2

*d
+0

] =
 -1

00 sendbuf[2*d+1] = +100

re
cv

bu
f[2

*d
+1

] =
 -2

00

recvbuf[2*d+0] = +100

se
nd

bu
f[2

*d
+0

] =
 -2

00 sendbuf[2*d+1] = +200
re

cv
bu

f[2
*d

+1
] =

 -3
00

recvbuf[2*d+0] = +200

se
nd

bu
f[2

*d
+0

] =
 -3

00 sendbuf[2*d+1] = +300

re
cv

bu
f[2

*d
+1

] =
 -4

00

recvbuf[2*d+0] = +300

se
nd

bu
f[2

*d
+0

] =
 -4

00 sendbuf[2*d+1] = +400

re
cv

bu
f[2

*d
+1

] =
 -1

00

sendbuf

recvbuf

-100 +100

+400 -200

coord == 0 coord == 1 coord == 2 coord == 3

-200 +200

+100 -300

-300 +300

+200 -400

-400 +400

+300 -100

… grey array entries are used only if periods[d] == non-zero in C or .TRUE. in Fortran

rank_source my_rank rank_dest

This figure
represents

one
direction

d.
Of course,
it is valid
for any

direction

Clarified in MPI-4.0

Slide 275

/ 644

As if …

After MPI_NEIGHBOR_ALLTOALL on a Cartesian communicator returned, the content of the recvbuf is
as if the following code is executed:

MPI_Cartdim_get(comm, &ndims);

for(/*direction*/ d = 0; d < ndims; d++) {

MPI_Cart_shift(comm, /*direction*/ d, /*disp*/ 1, &rank_source, &rank_dest);

MPI_Sendrecv(sendbuf[d*2+0], sendcount, sendtype, rank_source, /*sendtag*/ d*2,

recvbuf[d*2+1], recvcount, recvtype, rank_dest, /*recvtag*/ d*2,

comm, &status); /* 1st communication in direction of displacment -1 */

MPI_Sendrecv(sendbuf[d*2+1], sendcount, sendtype, rank_dest, /*sendtag*/ d*2+1,

recvbuf[d*2+0], recvcount, recvtype, rank_source, /*recvtag*/ d*2+1,

comm, &status); /* 2nd communication in direction of displacment +1 */

}

The tags are chosen to guarantee that both communications (i.e., in negative and positive direction) cannot
be mixed up, even if the MPI_SENDRECV is substituted by nonblocking communication and the
MPI_ISEND and MPI_IRECV calls are started in any sequence.

send_buf

recv_buf

-100 +100

+400 -200

-200 +200

+100 -300

-300 +300

+200 -400

-400 +400

+300 -100

rank_source my_rank rank_dest

MPI_

Slide 276

/ 644

Wrong implementations of periodic

MPI_NEIGHBOR_ALLTOALL with only 2 and 1 processes

recvbuf[2*d+0] = +200

se
nd

bu
f[2

*d
+0

] =
 -1

00 sendbuf[2*d+1] = +100

re
cv

bu
f[2

*d
+1

] =
 -2

00

recvbuf[2*d+0] = +100

se
nd

bu
f[2

*d
+0

] =
 -2

00 sendbuf[2*d+1] = +200

re
cv

bu
f[2

*d
+1

] =
 -1

00

recvbuf[2*d+0] = +100

se
nd

bu
f[2

*d
+0

] =
 -1

00 sendbuf[2*d+1] = +100

re
cv

bu
f[2

*d
+1

] =
 -1

00

sendbuf

recvbuf

-100 +100

+200 -200

coord == 0 coord == 1 coord == 0

-200 +200

+100 -100

-100 +100

+100 -100

-200 +200 -100 +100 -100 +100

Wrong results with openmpi/4.0.1-gnu-8.3.0 and cray-mpich/7.7.6 with 2 and 1 processes:

recvbuf

Results
required by

MPI

WRONG

Results
required by

MPI

WRONG

Slide 277

/ 644

Communication pattern of MPI_NEIGHBOR_ALLGATHER

sendbuf

recvbuf

100

300 200

200

100 300

300

200 100

100

100 100

… grey array entries are used only if periods[d] == non-zero in C or .TRUE. In Fortran
The recv_buf

represents one
direction d.

Of course, this figure
is valid for any

direction

The green recv_buf
elements are

recvbuf[2*d+0] and____
recvbuf[2*d+1]

Clarified in MPI-4.0

The send_buf is only
one element,

which is sent to the
neighbor processes

in all directions

Slide 278

/ 644

Other MPI features: MPI_BOTTOM and absolute addresses

• MPI_BOTTOM in point-to-point and collective communication:
– Buffer argument is MPI_BOTTOM
– Then absolute addresses can be used in

• Communication routines with byte displacement arguments,

e.g., MPI_(I)NEIGHBOR_ALLTOALLW

• Derived datatypes with byte displacements

– Displacements must be retrieved with MPI_GET_ADDRESS()

Skipped

3.1,

Separation:

Separation:

How to use several independent buffers
within one MPI call

Corrections

Slide 279

/ 644

Other MPI features: MPI_BOTTOM and absolute addresses

• MPI_BOTTOM in point-to-point and collective communication:
– Buffer argument is MPI_BOTTOM
– Then absolute addresses can be used in

• Communication routines with byte displacement arguments,

e.g., MPI_(I)NEIGHBOR_ALLTOALLW

• Derived datatypes with byte displacements

– Displacements must be retrieved with MPI_GET_ADDRESS()
– MPI_BOTTOM is an address,

i.e., cannot be assigned to a Fortran variable!
– MPI-3.1/MPI-4.0, Section 2.5.4, page 15 line 45 – page 16 line 6 / page 21 lines 14-23

shows all such address constants
that cannot be used in expressions or assignments in Fortran, e.g.,

• MPI_STATUS_IGNORE ( point-to-point comm.)

• MPI_IN_PLACE ( collective comm.)

Fortran

Skipped

3.1,

Separation:

Separation:

How to use several independent buffers
within one MPI call

Corrections

Slide 279

/ 644

Other MPI features: MPI_BOTTOM and absolute addresses

• MPI_BOTTOM in point-to-point and collective communication:
– Buffer argument is MPI_BOTTOM
– Then absolute addresses can be used in

• Communication routines with byte displacement arguments,

e.g., MPI_(I)NEIGHBOR_ALLTOALLW

• Derived datatypes with byte displacements

– Displacements must be retrieved with MPI_GET_ADDRESS()
– MPI_BOTTOM is an address,

i.e., cannot be assigned to a Fortran variable!
– MPI-3.1/MPI-4.0, Section 2.5.4, page 15 line 45 – page 16 line 6 / page 21 lines 14-23

shows all such address constants
that cannot be used in expressions or assignments in Fortran, e.g.,

• MPI_STATUS_IGNORE ( point-to-point comm.)

• MPI_IN_PLACE ( collective comm.)

– Fortran: Using MPI_BOTTOM & absolute displacement of variable X
 <type>, ASYNCHRONOUS :: X and MPI_F_SYNC_REG(X) is needed:

• MPI_BOTTOM in a blocking MPI routine  MPI_F_SYNC_REG before and after this routine

• in a nonblocking routine  MPI_F_SYNC_REG before this routine & after final WAIT/TEST

Fortran

Skipped

3.1,

Separation:

Separation:

How to use several independent buffers
within one MPI call

Corrections

Slide 279

/ 644

Ex
er

ci
se

 5
Exercise 5 — Neighbor Collective Communication

Use C/Ch9/ring_neighbor_alltoall_skel.c
or F_30/Ch9/ring_neighbor_alltoall_skel_30.f90
or PY/Ch9/ring_neighbor_alltoall_skel.py

Keep the ring communication in the virtual topology example, but
substitute the point-to-point communication by neighborhood collective:

– I.e., Isend-Recv-Wait  one call to MPI_Neighbor_alltoall
– rcv_buf and snd_buf must be extended to a rcv_buf_arr and snd_buf_arr

with rcv_buf_arr[0] as rcv_buf and snd_buf_arr[1] as snd_buf,
i.e., according to the sequence rule for the buffer segments.

– snd_count and recv_count are both 1 (not 2!), describing one buffer, not the array
of buffers (i.e., one message)!

rcv_buf of ring = [0] for source rank

(unused) [1] for dest rank

rcv_buf_arr
[0] for source rank (unused)

[1] for dest rank = snd_buf of ring

snd_buf_arrrank=0

rank=size-1 rank=1

New in MPI-3.0

…buffers (i.e. one message)!

C

Fortran

Python

In MPI/tasks/… In this example, we ignore the
communication in the other

direction.
Of course in real applications,
both communications (to the
left and to the right) are used.

Slide 280

/ 644

CAUTION: Officially, this example is not portable, because address differences are allowed only inside

of structures or arrays, i.e., snd_buf and rcv_buf need to be part of a common space  MPI-3.1, 4.1.12

MPI-4.0, 5.1.12

Exercise 6 (advanced) —

Neighbor Collective Communication & MPI_BOTTOM

Use C/Ch9/ring_neighbor_alltoallw_skel.c
or F_30/Ch9/ring_neighbor_alltoallw_skel_30.f90
or PY/Ch9/ring_neighbor_alltoallw_skel.py

You start again from the virtual topology example, but substitute the point-to-point
communication by MPI_NEIGHBOR_ALLTOALLW with MPI_BOTTOM and
absolute addresses of rcv_buf and snd_buf:

– I.e., Isend-Recv-Wait  one call to MPI_Neighbor_alltoallw
– Fortran: Do not forget to call MPI_F_SYNC_REG for the

real variables behind MPI_BOTTOM (i.e., snd_buf, rcv_buf)
before & after the communication call!

[0] for source rank | 1 | addr(rcv_buf)

[1] for dest rank | 0 | (unused) 0

counts | rcv_displs

[0] for source rank | 0 | (unused) 0

[1] for dest rank | 1 | addr(snd_buf)

rank=size-1 rank=1

New in MPI-3.0

Separation:

rank=0 counts | snd_displs

C

Fortran

Python

mpi4py may require mem_from_bottom =
MPI.memory.fromaddress(MPI.BOTTOM,0,0)

and passing mem_from_bottom instead of
MPI.BOTTOM, e.g., in

(mem_from_bottom, snd_counts, snd_displs,
snd_types)

as send buffer in comm.Neighbor_alltoallw(…)

Slide 281

/ 644

Quiz on Chapter 9-(2) – Neighborhood communication

A. Can you think of scenarios where collective neighborhood communication would be
beneficial over nonblocking pt-to-pt communication, and what routines would you use?

1. _______________________
2. _______________________

B. Which alternatives should be considered?
1. _______________________
2. _______________________

C. What must the application programmer in general do to enable these opportunities?
1. _______________________

Slide 283

Corrections from 2023

Not yet discussed

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Non-optimal communications:

26 node-to-node (outer)
20 CPU-to-CPU (middle)
36 core-to-core (inner)

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD
– Optimized placement

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Non-optimal communications:

26 node-to-node (outer)
20 CPU-to-CPU (middle)
36 core-to-core (inner)

Optimized placement:

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD
– Optimized placement

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Non-optimal communications:

26 node-to-node (outer)
20 CPU-to-CPU (middle)
36 core-to-core (inner)

Optimized placement:

Only 14 node-to-node
Only 12 CPU-to-CPU
56 core-to-core

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

/ 644

• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD
– Optimized placement
 See next slides and

example code

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Non-optimal communications:

26 node-to-node (outer)
20 CPU-to-CPU (middle)
36 core-to-core (inner)

Optimized placement:

Only 14 node-to-node
Only 12 CPU-to-CPU
56 core-to-core

Process coordinate, direction 1

Pr
oc

es
s

co
or

di
na

te
, d

ire
ct

io
n

0
*)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 286

4
● REC  online

Duplex accumulated ring bandwidth per node

A

B

C

D

What is important?

2 Haswell Intel Xeon E5-2680v3,
each with 12 cores.
Cray XC40 Aries dragonfly network

Further details
on the
benchmarks,
see next slide

Slide 287

4

Duplex accumulated ring bandwidth per node

The limit of accumulated
intra-CPU and intra-node

bandwidth is 8x larger than

the limit of accumulated
node-to-node bandwidth

A

B

C

D

What is important?

8x

2 Haswell Intel Xeon E5-2680v3,
each with 12 cores.
Cray XC40 Aries dragonfly network

Further details
on the
benchmarks,
see next slide

Slide 287

/ 644

Multiple communicating rings

Benchmark MPI/tasks/C/halo-benchmarks/halo_irecv_send_multiplelinks_toggle.c

• Varying message size,
• number of communication cores per CPU, and
• four communication schemes (example with 5 communicating cores per CPU)

CPUseveral cores

node
1

node
2

Intra-CPU: core-to-core

A

Slide 288

/ 644

Multiple communicating rings

Benchmark MPI/tasks/C/halo-benchmarks/halo_irecv_send_multiplelinks_toggle.c

• Varying message size,
• number of communication cores per CPU, and
• four communication schemes (example with 5 communicating cores per CPU)

CPUseveral cores

node
1

node
2

Intra-CPU: core-to-core

A

CPUseveral
cores

Intra-node: CPU-to-CPU

B

Slide 288

/ 644

Multiple communicating rings

Benchmark MPI/tasks/C/halo-benchmarks/halo_irecv_send_multiplelinks_toggle.c

• Varying message size,
• number of communication cores per CPU, and
• four communication schemes (example with 5 communicating cores per CPU)

CPUseveral cores

node
1

node
2

Intra-CPU: core-to-core

A

CPUseveral
cores

Intra-node: CPU-to-CPU

B

CPUseveral
cores

Inter-node, only

with one CPU

C

Slide 288

/ 644

Multiple communicating rings

Benchmark MPI/tasks/C/halo-benchmarks/halo_irecv_send_multiplelinks_toggle.c

• Varying message size,
• number of communication cores per CPU, and
• four communication schemes (example with 5 communicating cores per CPU)

CPUseveral cores

node
1

node
2

Intra-CPU: core-to-core

A

CPUseveral
cores

Intra-node: CPU-to-CPU

B

CPUseveral
cores

Inter-node, only

with one CPU

C

Inter-node and

all CPUs communicate

CPUseveral
cores

D

Slide 288

/ 644

The problems

1. All MPI libraries provide the necessary interfaces   ,

but without re-numbering in nearly all MPI-libraries   
• You may substitute MPI_Cart_create() by Bill Gropp’s solution

William D. Gropp, Using Node [and Socket] Information to Implement MPI Cartesian Topologies, Parallel Computing, 2019, and
in: Proceedings of the 25th European MPI User' Group Meeting, EuroMPI'18, ACM, New York, NY, USA, 2018, pp. 18:1-18:9.
doi:10.1145/3236367.3236377. Slides: http://wgropp.cs.illinois.edu/bib/talks/tdata/2018/nodecart-final.pdf.

EuroMPI2018_Niethammer+Rabenseifner_ML

Corrections

Slide 289

/ 644

The problems

1. All MPI libraries provide the necessary interfaces   ,

but without re-numbering in nearly all MPI-libraries   
• You may substitute MPI_Cart_create() by Bill Gropp’s solution

William D. Gropp, Using Node [and Socket] Information to Implement MPI Cartesian Topologies, Parallel Computing, 2019, and
in: Proceedings of the 25th European MPI User' Group Meeting, EuroMPI'18, ACM, New York, NY, USA, 2018, pp. 18:1-18:9.
doi:10.1145/3236367.3236377. Slides: http://wgropp.cs.illinois.edu/bib/talks/tdata/2018/nodecart-final.pdf.

2. The existing MPI-4.1 interfaces are not optimal
 for cluster of ccNUMA node hardware,

• We substitute MPI_Dims_create() + MPI_Cart_create()
by MPIX_Cart_weighted_create(… MPIX_WEIGHTS_EQUAL …)

 nor for application specific data mesh sizes
or direction-dependent bandwidth
• by MPIX_Cart_weighted_create(… weights ….)

EuroMPI2018_Niethammer+Rabenseifner_ML

Corrections

Slide 289

/ 644

The problems

1. All MPI libraries provide the necessary interfaces   ,

but without re-numbering in nearly all MPI-libraries   
• You may substitute MPI_Cart_create() by Bill Gropp’s solution

William D. Gropp, Using Node [and Socket] Information to Implement MPI Cartesian Topologies, Parallel Computing, 2019, and
in: Proceedings of the 25th European MPI User' Group Meeting, EuroMPI'18, ACM, New York, NY, USA, 2018, pp. 18:1-18:9.
doi:10.1145/3236367.3236377. Slides: http://wgropp.cs.illinois.edu/bib/talks/tdata/2018/nodecart-final.pdf.

2. The existing MPI-4.1 interfaces are not optimal
 for cluster of ccNUMA node hardware,

• We substitute MPI_Dims_create() + MPI_Cart_create()
by MPIX_Cart_weighted_create(… MPIX_WEIGHTS_EQUAL …)

 nor for application specific data mesh sizes
or direction-dependent bandwidth
• by MPIX_Cart_weighted_create(… weights ….)

3. Caution: The application must be prepared for rank re-numbering
• All communication through the newly created

Cartesian communicator with re-numbered ranks!
• One must not load data based on MPI_COMM_WORLD ranks!

EuroMPI2018_Niethammer+Rabenseifner_ML

Corrections

Slide 289

/ 644

Examples

• Application topology awareness
– 2-D example with 12 MPI processes and data mesh size 1800x580

• MPI_Dims_create  4x3 • data mesh aware  6x2 processes

580
290

300
1800

580
194

450
1800

Boundary of a subdomain = 2(300+290) = 1180 Boundary of a subdomain = 2(450+194) = 1288 

Slide 290

/ 644

Examples

• Application topology awareness
– 2-D example with 12 MPI processes and data mesh size 1800x580

• MPI_Dims_create  4x3 • data mesh aware  6x2 processes

• Hardware topology awareness
– 2-D example with 25 nodes x 24 cores and data mesh size 3000x3000

• MPI_Dims_create  25 x 24 • Hardware aware  30 x 20

= (5 nodes x 6 cores) X (5 nodes x 4 cores)

580
290

300
1800

580
194

450
1800

600

600

Accumulated

communication

per node

O(4x600) = O(2400) 

Accumulated

communication

per node

O(10x120+12x125)
= O(2700) 

120

125

Boundary of a subdomain = 2(300+290) = 1180 Boundary of a subdomain = 2(450+194) = 1288 

Slide 290

/ 644

Virtual
location of an
MPI process
within an
SMP node

All MPI
processes
of an SMP
node

Second and minor

optimization goal:

Whole intra-node
communication must be
minimized!

Hierarchical Cartesian Domain Decomposition

Example:
24 SMP nodes

X
32 cores/node

Per node:
maximal

8+8+8+8+16+16*)=
48 or 64*)

connections
to neighbor

nodes
*) with cyclic communication

Primary and main

optimization goal:

Whole communication
from each node to all of
its neighbors must be
minimized!

Slide 291

/ 644

Virtual
location of an
MPI process
within an
SMP node

All MPI
processes
of an SMP
node

Second and minor

optimization goal:

Whole intra-node
communication must be
minimized!

Hierarchical Cartesian Domain Decomposition

Example:
24 SMP nodes

X
32 cores/node

Per node:
maximal

8+8+8+8+16+16*)=
48 or 64*)

connections
to neighbor

nodes
*) with cyclic communication

Without
topology-

optimization:
96 connections
to other nodes

Primary and main

optimization goal:

Whole communication
from each node to all of
its neighbors must be
minimized!

Slide 291

/ 644

Virtual
location of an
MPI process
within an
SMP node

All MPI
processes
of an SMP
node

Second and minor

optimization goal:

Whole intra-node
communication must be
minimized!

Hierarchical Cartesian Domain Decomposition

Example:
24 SMP nodes

X
32 cores/node

Per node:
maximal

8+8+8+8+16+16*)=
48 or 64*)

connections
to neighbor

nodes
*) with cyclic communication

Without
topology-

optimization:
96 connections
to other nodes

2 or 1.6*) times slower
communication

Primary and main

optimization goal:

Whole communication
from each node to all of
its neighbors must be
minimized!

Slide 291

/ 644

Goals of MPI_Dims_create + MPI_Cart_create

• Given: comm_old (e.g., MPI_COMM_WORLD), ndims (e.g., 3 dimensions)

• Provide

– a factorization of #processes (of comm_old) into the dimensions dims[𝒊]𝑖=1..ndims

– a Cartesian communicator comm_cart

– a optimized reordering of the ranks in comm_old into the ranks of comm_cart
to minimize the Cartesian communication time, e.g., of

• MPI_Neighbor_alltoall

• Equivalent communication pattern implemented with

– MPI_Sendrecv

– Nonblocking MPI point-to-point communication

Slide 292

/ 644

The limits of MPI_Dims_create + MPI_Cart_create

• Not application topology aware
– MPI_Dims_create can only map evenly balanced Cartesian topologies

• Factorization of 48,000 processes into 20 x 40 x 60 processes
(e.g. for a mesh with 200 x 400 x 600 mesh points)
 no chance with current interface

Slide 293

/ 644

The limits of MPI_Dims_create + MPI_Cart_create

• Not application topology aware
– MPI_Dims_create can only map evenly balanced Cartesian topologies

• Factorization of 48,000 processes into 20 x 40 x 60 processes
(e.g. for a mesh with 200 x 400 x 600 mesh points)
 no chance with current interface

• Only partially hardware topology aware
– MPI_Dims_create has no communicator argument  not hardware aware

• An application mesh with 3000x3000 mesh points
on 25 nodes x 24 cores (=600 MPI processes)

– Answer from MPI_Dims_create:

» 25 x 24 MPI processes

» Mapped by most libraries to 25 x 1 nodes
with 120x3000 mesh points per node
 too much node-to-node communication

Slide 293

/ 644

The limits of MPI_Dims_create + MPI_Cart_create

• Not application topology aware
– MPI_Dims_create can only map evenly balanced Cartesian topologies

• Factorization of 48,000 processes into 20 x 40 x 60 processes
(e.g. for a mesh with 200 x 400 x 600 mesh points)
 no chance with current interface

• Only partially hardware topology aware
– MPI_Dims_create has no communicator argument  not hardware aware

• An application mesh with 3000x3000 mesh points
on 25 nodes x 24 cores (=600 MPI processes)

– Answer from MPI_Dims_create:

» 25 x 24 MPI processes

» Mapped by most libraries to 25 x 1 nodes
with 120x3000 mesh points per node
 too much node-to-node communication

Major problems:
• No weights,
no info

• Two separated
interfaces for
two common
tasks:
 Factorization of

#processes
 Mapping of the

processes to
the hardware

Slide 293

/ 644

Goals of Cartesian MPI_Dims + Cart_create

• Remark: On a hierarchical hardware,
– optimized factorization and reordering typically means

minimal node-to-node communication,
– which typically means that the communicating surfaces

of the data on each node is as quadratic1) as possible
(or the subdomain as cubic1) as possible)

• The current API, i.e.,
– due to the missing weights
– and the non-hardware aware MPI_Dims_create,

does not allow such an optimized factorization and reordering in many cases.

Slide 294

1) “quadratic” and “cubic” may be qualified due to different communication bandwidth
in each direction caused by sending (fast) non-strided or (slow) strided data

/ 644

The new interface – proposed for MPI-4.1

• MPI_Dims_create_weighted (
/*IN*/ int nnodes,
/*IN*/ int ndims,
/*IN*/ int dim_weights[ndims],
/*IN*/ int periods[ndims], /* for future use in

combination with info */
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */

/*INOUT*/ int dims[ndims]);

– Arguments have same meaning as in MPI_Dims_create

– Goal (in absence of an info argument):

• dims[i]•dim_weights[i] should be as close as possible,

• i.e., the ∑i=0..(ndims-1) dims[i]•dim_weights[i] as small as possible
(advice to implementors)

input for application-topology-awareness

Slide 295

/ 644

The new interface – proposed for MPI-4.1

• MPI_Dims_create_weighted (
/*IN*/ int nnodes,
/*IN*/ int ndims,
/*IN*/ int dim_weights[ndims],
/*IN*/ int periods[ndims], /* for future use in

combination with info */
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */

/*INOUT*/ int dims[ndims]);

– Arguments have same meaning as in MPI_Dims_create

– Goal (in absence of an info argument):

• dims[i]•dim_weights[i] should be as close as possible,

• i.e., the ∑i=0..(ndims-1) dims[i]•dim_weights[i] as small as possible
(advice to implementors)

A new
courtesy
function:
Weighted

factorization

input for application-topology-awareness

Slide 295

/ 644

The new interface – proposed for MPI-4.1, continued

• MPI_Cart_create_weighted (
/*IN*/ MPI_Comm comm_old,
/*IN*/ int ndims,
/*IN*/ int dim_weights[ndims], /*or MPI_UNWEIGHTED*/
/*IN*/ int periods[ndims],
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */
/*INOUT*/ int dims[ndims],

/*OUT*/ MPI_Comm *comm_cart);

– Arguments have same meaning as in MPI_Dims_create & MPI_Cart_create

– See next slide for meaning of dim_weights[ndims]

– Goal: chooses
• an ndims-dimensional factorization of #processes of comm_old ( dims)
• and an appropriate reordering of the ranks ( comm_cart),

such that the execution time of a communication step along the virtual process grid
(e.g., with MPI_NEIGHBOR_ALLTOALL or equivalent calls to MPI_SENDRECV

is as small as possible.

input for hardware-awareness

input for application-
topology-awareness

Slide 296

/ 644

The new interface – proposed for MPI-4.1, continued

• MPI_Cart_create_weighted (
/*IN*/ MPI_Comm comm_old,
/*IN*/ int ndims,
/*IN*/ int dim_weights[ndims], /*or MPI_UNWEIGHTED*/
/*IN*/ int periods[ndims],
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */
/*INOUT*/ int dims[ndims],

/*OUT*/ MPI_Comm *comm_cart);

– Arguments have same meaning as in MPI_Dims_create & MPI_Cart_create

– See next slide for meaning of dim_weights[ndims]

– Goal: chooses
• an ndims-dimensional factorization of #processes of comm_old ( dims)
• and an appropriate reordering of the ranks ( comm_cart),

such that the execution time of a communication step along the virtual process grid
(e.g., with MPI_NEIGHBOR_ALLTOALL or equivalent calls to MPI_SENDRECV

is as small as possible.

The new
application
& hardware
topology
aware
interface

input for hardware-awareness

input for application-
topology-awareness

Slide 296

/ 644

How to specify the dim_weights?

• Given: comm_old (e.g., MPI_COMM_WORLD), ndims (e.g., 3 dimensions)

• This means, the domain decomposition has not yet taken place!

• Goals for dim_weights and the API at all:
– Easy to understand
– Easy to calculate
– Relevant for typical Cartesian communication patterns

(MPI_Neighbor_alltoall or alternatives)
– Rules fit to usual design criteria of MPI

• E.g., reusing MPI_UNWEIGHTED  integer array
• Can be enhanced by vendors for their platforms
 additional info argument for further specification

• To provide also the less optimal two stage interface
(in addition to the combined routine)

Slide 297

/ 644

The dim_weights[𝑖], example with 3 dimensions

The arguments dim_weights[𝒊] 𝑖 =0::(ndims-1), abbreviated with 𝒘𝒊,
should be specified as the accumulated message size (in bytes)
communicated in one communication step through each cutting plane

orthogonal to dimension 𝑑𝑖 and in each of the two directions.1)

𝑤1 𝑤1 𝑤1

𝑤1

𝑑0𝑑2
(=𝑤1𝑑1

ς𝑖 𝑑𝑖
)

𝑑1(=4)

𝑑
2
(=

3
)

Cutting plane orthogonal to dimension 1

periods[0]
=false

periods[1]=false

periods[2]=true

1

2

0

Three dimensions,

i.e., ndims=3

Abbreviations:

𝑑𝑖 = dims[𝑖]
𝑤𝑖 = dim_weights[𝑖]
with

𝑖 = 0..(ndims-1)

Slide 298
1) If the communication bandwidth is different in each direction 𝑖, then
𝑤𝑖 should be divided by the expected communication bandwidth.

/ 644

The dim_weights[𝑖], example with 3 dimensions, continued

Example for the calculation of the accumulated communication size 𝑤𝑖,𝑖=0..2

in each dimension.
• 𝑔𝑖 – The data mesh sizes 𝑔𝑖,𝑖=0..2 express the three dimensions

of the total application data mesh.
• ℎ𝑖 – The value ℎ𝑖 represents the halo width in a given direction

when the 2-dimensional side of a subdomain is communicated
to the neighbor process in that direction.

Output from MPI_Cart/Dims_create_weighted: The dimensions 𝑑𝑖,𝑖=0..2

Distributed

into the

sub-domains

on each MPI
process

𝑔0

𝑔0
𝑑0

𝑑0

𝑔1
𝑔1
𝑑1

𝑑1

𝑔2
𝑔2
𝑑2

𝑑2

ℎ0

ℎ2

ℎ1

𝑤1 = 𝑔0ℎ1𝑔2 = ℎ1
ς𝑖 𝑔𝑖
𝑔1

Accumulated communication size through

cutting plane orthogonal to dimension 110

dimensions

2

Abbreviations: 𝑔𝑖 = data mesh size in dimension 𝑖, 𝑖=0..(ndims-1), 𝑤𝑖 = dim_weights[𝑖],
ℎ𝑖 = halo width in dimension 𝑖, 𝑑𝑖 = dims[𝑖]

Global data mesh

Slide 299

/ 644

The dim_weights[𝑖], example with 3 dimensions, continued

Example for the calculation of the accumulated communication size 𝑤𝑖,𝑖=0..2

in each dimension.
• 𝑔𝑖 – The data mesh sizes 𝑔𝑖,𝑖=0..2 express the three dimensions

of the total application data mesh.
• ℎ𝑖 – The value ℎ𝑖 represents the halo width in a given direction

when the 2-dimensional side of a subdomain is communicated
to the neighbor process in that direction.

Output from MPI_Cart/Dims_create_weighted: The dimensions 𝑑𝑖,𝑖=0..2

Distributed

into the

sub-domains

on each MPI
process

𝑔0

𝑔0
𝑑0

𝑑0

𝑔1
𝑔1
𝑑1

𝑑1

𝑔2
𝑔2
𝑑2

𝑑2

ℎ0

ℎ2

ℎ1

𝑤1 = 𝑔0ℎ1𝑔2 = ℎ1
ς𝑖 𝑔𝑖
𝑔1

Accumulated communication size through

cutting plane orthogonal to dimension 110

dimensions

2

Abbreviations: 𝑔𝑖 = data mesh size in dimension 𝑖, 𝑖=0..(ndims-1), 𝑤𝑖 = dim_weights[𝑖],
ℎ𝑖 = halo width in dimension 𝑖, 𝑑𝑖 = dims[𝑖]

Global data mesh

Important:

• The definition of
the dim_weights
(= 𝑤𝑖 in this
figure)
is independent
of the total
number of
processes and
its factorization
into the
dimensions
(= 𝑑𝑖 in this
figure)

• Result1) was

𝑤𝑖= ℎ𝑖
ς𝑗𝑔𝑗

𝑔𝑖

Slide 299
1) If the communication bandwidth is different in each direction 𝑖, then
𝑤𝑖 should be divided by the expected communication bandwidth.

/ 644

Simple answers to our problems / examples

• Existing API is not application topology aware
• Factorization of 48,000 processes into 20 x 40 x 60 processes
 no chance with current API
(e.g. for a mesh with 200 x 400 x 600 mesh points)

• Use MPI_Cart_create_weighted with the dim_weights=(N/200, N/400, N/600)
with N=200•400•600

• Existing API is only partially hardware topology aware
• An application mesh with 3000x3000 mesh points (i.e., example with MPI_UNWEIGHTED)

on 25 nodes x 24 cores (=600 MPI processes)
– Current API must factorize into 25 x 24 MPI processes

» 25 x 1 nodes  120x3000 mesh points  too much node to node communication

– Optimized answer from MPI_Cart_create_weighted may be:
» 30 x 20 MPI processes
» Mapped to 5 x 5 nodes with 600x600 mesh points per node
 minimal node-to-node communication

Corrections fro. 2022

Slide 300

/ 644

The new interfaces – a real implementation

Substitute for / enhancement to existing MPI-1
• MPI_Dims_create (size_of_comm_old, ndims, dims[ndims]);
• MPI_Cart_create (comm_old, ndims, dims[ndims], periods, reorder, *comm_cart);

New: (in MPI/tasks/C/Ch9/MPIX/)

• MPIX_Cart_weighted_create (
/*IN*/ MPI_Comm comm_old,
/*IN*/ int ndims,
/*IN*/ double dim_weights[ndims], /*or MPIX_WEIGHTS_EQUAL*/
/*IN*/ int periods[ndims],
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */
/*INOUT*/ int dims[ndims],

/*OUT*/ MPI_Comm *comm_cart);

– Arguments have same meaning as in MPI_Dims_create & MPI_Cart_create

– See next slide for meaning of dim_weights[ndims]

• MPIX_Dims_weighted_create (int nnodes, int ndims, double dim_weights[ndims],
/*OUT*/ int dims[ndims]);

Slide 301

/ 644

The new interfaces – a real implementation

Substitute for / enhancement to existing MPI-1
• MPI_Dims_create (size_of_comm_old, ndims, dims[ndims]);
• MPI_Cart_create (comm_old, ndims, dims[ndims], periods, reorder, *comm_cart);

New: (in MPI/tasks/C/Ch9/MPIX/)

• MPIX_Cart_weighted_create (
/*IN*/ MPI_Comm comm_old,
/*IN*/ int ndims,
/*IN*/ double dim_weights[ndims], /*or MPIX_WEIGHTS_EQUAL*/
/*IN*/ int periods[ndims],
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */
/*INOUT*/ int dims[ndims],

/*OUT*/ MPI_Comm *comm_cart);

– Arguments have same meaning as in MPI_Dims_create & MPI_Cart_create

– See next slide for meaning of dim_weights[ndims]

• MPIX_Dims_weighted_create (int nnodes, int ndims, double dim_weights[ndims],
/*OUT*/ int dims[ndims]);

Su
bs

tit
ut

e
fo

r /
 e

nh
an

ce
m

en
t t

o
ex

is
tin

g
M

PI
-1

M
PI

_D
im

s_
cr

ea
te

(s
iz

e_
of

_c
om

m
_o

ld
, n

di
m

s,
 d

im
s
);

M
PI

_C
ar

t_
cr

ea
te

(c
om

m
_o

ld
, n

di
m

s,
 d

im
s,

 p
er

io
ds

,
re

or
de

r,
*c

o
m

m
_

c
a

rt
);

Slide 301

/ 644

Further Interfaces

We proposed the algorithm in
• Christoph Niethammer and Rolf Rabenseifner. 2018.

Topology aware Cartesian grid mapping with MPI.
EuroMPI 2018. https://eurompi2018.bsc.es/
 Program Poster Session Abstract+Poster

MPIX_Dims_weighted_create() is based on the ideas in:
• Jesper Larsson Träff and Felix Donatus Lübbe. 2015.

Specification Guideline Violations by MPI Dims Create.

In Proceedings of the 22nd European MPI Users’ Group Meeting (EuroMPI ’15). ACM, New
York, NY, USA, Article 19, 2 pages.

Full paper:
• Christoph Niethammer, Rolf Rabenseifner:

An MPI interface for application and hardware aware cartesian topology optimization.

EuroMPI 2019. Proceedings of the 26th European MPI Users' Group Meeting, September
2019, article No. 6, pages 1-8, https://doi.org/10.1145/3343211.3343217

Slide 302

/ 644

Further Interfaces

We proposed the algorithm in
• Christoph Niethammer and Rolf Rabenseifner. 2018.

Topology aware Cartesian grid mapping with MPI.
EuroMPI 2018. https://eurompi2018.bsc.es/
 Program Poster Session Abstract+Poster

MPIX_Dims_weighted_create() is based on the ideas in:
• Jesper Larsson Träff and Felix Donatus Lübbe. 2015.

Specification Guideline Violations by MPI Dims Create.

In Proceedings of the 22nd European MPI Users’ Group Meeting (EuroMPI ’15). ACM, New
York, NY, USA, Article 19, 2 pages.

Full paper:
• Christoph Niethammer, Rolf Rabenseifner:

An MPI interface for application and hardware aware cartesian topology optimization.

EuroMPI 2019. Proceedings of the 26th European MPI Users' Group Meeting, September
2019, article No. 6, pages 1-8, https://doi.org/10.1145/3343211.3343217

Slide 302

/ 644

Remarks

• The portable MPIX routines internally use
MPI_Comm_split_type(…, MPI_COMM_TYPE_SHARED, …)
to split comm_old into ccNUMA nodes,

• plus (may be) additionally splitting into NUMA domains.
• With using hyperthreads, it may be helpful

to apply sequential ranking to the hyperthreads,
– i.e., in MPI_COMM_WORLD, ranks 0+1 should be

• the first two hyperthreads

• of the first core
• of the first CPU
• of the first ccNUMA node

• Especially with weights 𝒘𝒊 based on 𝐺
𝑔𝑖

, it is important
– that the data of the mesh points is not read in based on (old) ranks in

MPI_COMM_WORLD,
– because the domain decomposition must be done based on

comm_cart and its dimensions and (new) ranks

Slide 303

/ 644

Typical use of MPIX_Cart_weighted_create

#define ndims 3

int i, nnodes, world_myrank, cart_myrank, dims[ndims], periods[ndims], my_coords[ndims];

int global_array_dim[ndims], halo_width[ndims], local_array_dim[ndims], local_array_size=1;

double dim_weights[ndims], global_array_size=1.0;

MPI_Comm comm_cart;

MPI_Init(NULL,NULL);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &world_myrank);

for (i=0; i<ndims; i++) {

dims[i]=0; periods[i]=…;

global_array_dim[i]=…; halo_width[i]=…;

global_array_size = global_array_size * (double)(global_array_dim[i]);

}

for (i=0; i<ndims; i++) {

dim_weights[i] = (double)(halo_width[i]) * global_array_size / (double)(global_array_dim[i]);

}

MPIX_Cart_weighted_create(MPI_COMM_WORLD, ndims, dim_weights, dims, periods, MPI_INFO_NULL, dims,

&comm_cart);

MPI_Comm_rank(comm_cart, &cart_myrank);

MPI_Cart_coords(comm_cart, cart_myrank, ndims, my_coords, ierror)

for (i=0; i<ndims; i++) {

local_array_dim[i] = global_array_dim[i] / dims[i];

local_array_dim[i] … adjust it if the division has a remainder

local_array_size = local_array_size * local_array_dim[i];

}

local_data_array = malloc(sizeof(…) * local_array_size);

From now on:
 all communication should be based

on comm_cart & cart_myrank & my_coords
 one can setup the sub-domains

& read in the application data

Weights: 𝑤𝑖= ℎ𝑖
ς𝑗 𝑔𝑗

𝑔𝑖

Slide 304

Corrections fro. 2024
Typo:

/ 644

1) Ricard Borrell, Juan Carlos García Cajas, Daniel Mira,
Ahmed Taha, Seid Koric, et al.. Parallel mesh partitioning
based on space filling curves. Computers and Fluids,
2018, 173, pp.264-272.
ff10.1016/j.compfluid.2018.01.040ff. ffhal-01969026f

2) D. F. Harlacher, H. Klimach, S. Roller, C. Siebert and F.
Wolf, "Dynamic Load Balancing for Unstructured Meshes
on Space-Filling Curves," 2012 IEEE 26th International
Parallel and Distributed Processing Symposium
Workshops & PhD Forum, Shanghai, China, 2012, pp.
1661-1669, doi: 10.1109/IPDPSW.2012.207.

3) Stefan Schamberger, Jens-Michael Wierum, Partitioning
finite element meshes using space-filling curves, Future
Generation Computer Systems, Volume 21, Issue 5,
2005, Pages 759-766, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2004.05.018.

Unstructured Grid / Data Mesh

Mesh partitioning with special load balancing libraries
– Metis & ParMetis (George Karypis, University of Minnesota)

• http://glaros.dtc.umn.edu/gkhome/views/metis/metis.html

– Scotch & PT-Scotch (Francois Pellegrini, LaBRI, France)
• https://www.labri.fr/perso/pelegrin/scotch/

– Alternative partitioning via space-filling curves, e.g.,
• https://hal.science/hal-01969026/document 1)

• https://doi.org/10.1109/IPDPSW.2012.207 2)

• https://doi.org/10.1016/j.future.2004.05.018 3)

– Goals:
• Same work load in each sub-domain

• Minimizing the maximal number

of neighbor-connections

between sub-domains

• Minimizing the total number

of neighbor sub-domains

of each sub-domain

0 2

3
1

4
5

6 10

9
8

7 11

12 15

16
13

17 14

21 20

23
22

19

18

Result of mesh
partitioning:

Sort out all mesh
elements into sub-

domains

Each sub-domain
is stored on one

MPI process
The weighted communication graph of the

virtual process grid can be used as input for
MPI_Dist_graph_create(_adjacent)

Slide 305

2

2

2 3

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid

Graph of
all sub-

domains
(core-
sized)

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid

Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid
2. Numa-domain-level DD: recombining of core-domains

Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid
2. Numa-domain-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains

Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid
2. Numa-domain-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains

Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

• Problem:

Recombination
must not calculate
patches that are
smaller or larger
than the average

• In this example
the load-balancer
(e.g., Metis or Scotch)
must combine
always
6 cores, and
4 numa-domains

(i.e., sockets or
dies)

• Advantage:

Communication
is balanced!

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid
2. Numa-domain-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains
4. Numbering from core to socket to node

as done in MPI_COMM_WORLD (e.g., sequentially)
Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

• Problem:

Recombination
must not calculate
patches that are
smaller or larger
than the average

• In this example
the load-balancer
(e.g., Metis or Scotch)
must combine
always
6 cores, and
4 numa-domains

(i.e., sockets or
dies)

• Advantage:

Communication
is balanced!

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid
2. Numa-domain-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains
4. Numbering from core to socket to node

as done in MPI_COMM_WORLD (e.g., sequentially)
Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

3 4 5

0 1 2

• Problem:

Recombination
must not calculate
patches that are
smaller or larger
than the average

• In this example
the load-balancer
(e.g., Metis or Scotch)
must combine
always
6 cores, and
4 numa-domains

(i.e., sockets or
dies)

• Advantage:

Communication
is balanced!

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid
2. Numa-domain-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains
4. Numbering from core to socket to node

as done in MPI_COMM_WORLD (e.g., sequentially)
Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

3 4 5

0 1 2

10 11

8 9

6 7

• Problem:

Recombination
must not calculate
patches that are
smaller or larger
than the average

• In this example
the load-balancer
(e.g., Metis or Scotch)
must combine
always
6 cores, and
4 numa-domains

(i.e., sockets or
dies)

• Advantage:

Communication
is balanced!

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid
2. Numa-domain-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains
4. Numbering from core to socket to node

as done in MPI_COMM_WORLD (e.g., sequentially)
Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

3 4 5

0 1 2

10 11

8 9

6 7

17

15 16

12 13 14

• Problem:

Recombination
must not calculate
patches that are
smaller or larger
than the average

• In this example
the load-balancer
(e.g., Metis or Scotch)
must combine
always
6 cores, and
4 numa-domains

(i.e., sockets or
dies)

• Advantage:

Communication
is balanced!

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid
2. Numa-domain-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains
4. Numbering from core to socket to node

as done in MPI_COMM_WORLD (e.g., sequentially)
Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

3 4 5

0 1 2

10 11

8 9

6 7

17

15 16

12 13 14

21 22 23

18 19 20

• Problem:

Recombination
must not calculate
patches that are
smaller or larger
than the average

• In this example
the load-balancer
(e.g., Metis or Scotch)
must combine
always
6 cores, and
4 numa-domains

(i.e., sockets or
dies)

• Advantage:

Communication
is balanced!

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid
2. Numa-domain-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains
4. Numbering from core to socket to node

as done in MPI_COMM_WORLD (e.g., sequentially)
Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

3 4 5

0 1 2

10 11

8 9

6 7

17

15 16

12 13 14

21 22 23

18 19 20

26 27 28 29

24 25

• Problem:

Recombination
must not calculate
patches that are
smaller or larger
than the average

• In this example
the load-balancer
(e.g., Metis or Scotch)
must combine
always
6 cores, and
4 numa-domains

(i.e., sockets or
dies)

• Advantage:

Communication
is balanced!

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

/ 644

Unstructured Grid / Data Mesh –

Multi-level Domain Decomposition through Recombination

1. Core-level DD: partitioning of (large) application’s data grid
2. Numa-domain-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains
4. Numbering from core to socket to node

as done in MPI_COMM_WORLD (e.g., sequentially)
Graph of
all sub-

domains
(core-
sized)

Grouped
into sub-
graphs
for each
socket

3 4 5

0 1 2

10 11

8 9

6 7

17

15 16

12 13 14

21 22 23

18 19 20

26 27 28 29

24 25

• Problem:

Recombination
must not calculate
patches that are
smaller or larger
than the average

• In this example
the load-balancer
(e.g., Metis or Scotch)
must combine
always
6 cores, and
4 numa-domains

(i.e., sockets or
dies)

• Advantage:

Communication
is balanced!

e.g., with Metis / Scotch or
via space-filling curves

Modern yellow boxes for pure

Slide 306

5. Subdomain data that was read before the virtual graph topology was
created needs to be sent to the appropriate process after reordering,

/ 644

Exercise:

Adding a Cartesian Topology

• Given: a 3-D halo communication benchmark using irecv + send
– cd MPI/tasks/C/Ch9/MPIX/

– mpicc course/C/Ch9/halo_irecv_send_toggle_3dim_grid_skel.c MPIX*.c -lm
• The application uses a 3-D Cartesian communicator.

• From this one, it uses 1-D line communicators for communicating in the 3 dimensions

• Overview on the to-do’s:
– “substituting” the not reordered Cartesian topology (cart_method==1)

through an optimizing algorithm (cart_method==2,3,4)
• cart_method==2: Add MPIX_Cart… (…MPI_WEIGHTS_EQUAL…)

• cart_method==3: Calculate the weights based on

meshsize_avg_per_proc_startval

Add MPIX_Cart… (…weights…)

• cart_method==4: same as with cart_method==3, but without weights-calculation

– Or just use halo_irecv_send_toggle_3dim_grid.c and look at the diff
• diff halo_irecv_send_toggle_3dim_grid_skel.c halo_irecv_send_toggle_3dim_grid.c

– Measure the communication bandwidth win
• For default mesh size 2 / 2 / 2

• For other mesh sizes, e.g., 1 / 2 / 4

My apologies for
missing Fortran

See
/* TODO

lines

Ex
er

ci
se

• This exercise is part of our Hybrid MPI+X course
• It is not part of our MPI courses, but
• we provide it here for you as a

self-study exercise / example.

Slide 307

/ 644

Exercise: Explanations

• Input per measurement, e.g.on 8 nodes x 2 CPUs x 12 cores: Example
– cart_method: 2

• 1=Dims_create+Cart_create,

• 2=Cart_weighted_create

(MPIX_WEIGHTS_EQUAL),

• 3=dito(weights),

• 4=dito manually,

• 5=Cart_ml_create(dims_ml),

• 0=end of input

– Data mesh sizes, integer start values (= ratio) 1 2 4
– Using MPI_Type_vector, for each dimension a pair of blocklength&stride 0 0 0 0 0 0
– weights (double values) (only with cart_method==4) 1.00 0.50 0.25
– number of hardware levels (only with cart_method==5) 3

dims_ml: for each of the 3 Cartesian dimensions a list of 3 dimensions from
outer to inner hardware level, e.g., 8 nodes x 2 CPUs x 12 cores are split into
1x2x4 nodes x 2x1x1 CPUs x 2x3x2 cores

• dims_ml[d=0] = 1 2 2
• dims_ml[d=1] = 2 1 3
• dims_ml[d=2] = 4 1 2

Column 1

Columns 2-4

Columns 5-10

Columns 11-13

Column 11

Columns 12-14
15-17
18-20

Slide 308

/ 644

Exercise: Explanations

• Input per measurement, e.g.on 8 nodes x 2 CPUs x 12 cores: Example
– cart_method: 2

• 1=Dims_create+Cart_create,

• 2=Cart_weighted_create

(MPIX_WEIGHTS_EQUAL),

• 3=dito(weights),

• 4=dito manually,

• 5=Cart_ml_create(dims_ml),

• 0=end of input

– Data mesh sizes, integer start values (= ratio) 1 2 4
– Using MPI_Type_vector, for each dimension a pair of blocklength&stride 0 0 0 0 0 0
– weights (double values) (only with cart_method==4) 1.00 0.50 0.25
– number of hardware levels (only with cart_method==5) 3

dims_ml: for each of the 3 Cartesian dimensions a list of 3 dimensions from
outer to inner hardware level, e.g., 8 nodes x 2 CPUs x 12 cores are split into
1x2x4 nodes x 2x1x1 CPUs x 2x3x2 cores

• dims_ml[d=0] = 1 2 2
• dims_ml[d=1] = 2 1 3
• dims_ml[d=2] = 4 1 2

Column 1

Columns 2-4

Columns 5-10

Columns 11-13

Column 11

Columns 12-14
15-17
18-20

Start a 8 or 12-node batch-job with
your own input file:
Report your acceleration factors

to the course group

Slide 308

/ 644

Exercise: Explanations

• Input per measurement, e.g.on 8 nodes x 2 CPUs x 12 cores: Example
– cart_method: 2

• 1=Dims_create+Cart_create,

• 2=Cart_weighted_create

(MPIX_WEIGHTS_EQUAL),

• 3=dito(weights),

• 4=dito manually,

• 5=Cart_ml_create(dims_ml),

• 0=end of input

– Data mesh sizes, integer start values (= ratio) 1 2 4
– Using MPI_Type_vector, for each dimension a pair of blocklength&stride 0 0 0 0 0 0
– weights (double values) (only with cart_method==4) 1.00 0.50 0.25
– number of hardware levels (only with cart_method==5) 3

dims_ml: for each of the 3 Cartesian dimensions a list of 3 dimensions from
outer to inner hardware level, e.g., 8 nodes x 2 CPUs x 12 cores are split into
1x2x4 nodes x 2x1x1 CPUs x 2x3x2 cores

• dims_ml[d=0] = 1 2 2
• dims_ml[d=1] = 2 1 3
• dims_ml[d=2] = 4 1 2

Column 1

Columns 2-4

Columns 5-10

Columns 11-13

Column 11

Columns 12-14
15-17
18-20

Start a 8 or 12-node batch-job with
your own input file:
Report your acceleration factors

to the course group

These base values (per process) are multiplied with
3 #𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 and then with 1, 2, 4, 8, … 512,
e.g., with 192 processes: 2 ∙

3
192 ∙ 512 = 5910

(rounded to a multiple of the dim. of the process grid).
See also later the slide explaining the output.
Recommendation for several experiments: Use the same
initial mesh volume (here 8), e.g., 1x2x4, 2x2x2, 4x2x1.
Note that this application data mesh volume is completely in-
dependent of the number of hardware nodes, CPUs, cores.

Slide 308

/ 644

Exercise: Explanations

• Input per measurement, e.g.on 8 nodes x 2 CPUs x 12 cores: Example
– cart_method: 2

• 1=Dims_create+Cart_create,

• 2=Cart_weighted_create

(MPIX_WEIGHTS_EQUAL),

• 3=dito(weights),

• 4=dito manually,

• 5=Cart_ml_create(dims_ml),

• 0=end of input

– Data mesh sizes, integer start values (= ratio) 1 2 4
– Using MPI_Type_vector, for each dimension a pair of blocklength&stride 0 0 0 0 0 0
– weights (double values) (only with cart_method==4) 1.00 0.50 0.25
– number of hardware levels (only with cart_method==5) 3

dims_ml: for each of the 3 Cartesian dimensions a list of 3 dimensions from
outer to inner hardware level, e.g., 8 nodes x 2 CPUs x 12 cores are split into
1x2x4 nodes x 2x1x1 CPUs x 2x3x2 cores

• dims_ml[d=0] = 1 2 2
• dims_ml[d=1] = 2 1 3
• dims_ml[d=2] = 4 1 2

0 0 = contiguous

Column 1

Columns 2-4

Columns 5-10

Columns 11-13

Column 11

Columns 12-14
15-17
18-20

Start a 8 or 12-node batch-job with
your own input file:
Report your acceleration factors

to the course group

These base values (per process) are multiplied with
3 #𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 and then with 1, 2, 4, 8, … 512,
e.g., with 192 processes: 2 ∙

3
192 ∙ 512 = 5910

(rounded to a multiple of the dim. of the process grid).
See also later the slide explaining the output.
Recommendation for several experiments: Use the same
initial mesh volume (here 8), e.g., 1x2x4, 2x2x2, 4x2x1.
Note that this application data mesh volume is completely in-
dependent of the number of hardware nodes, CPUs, cores.

Slide 308

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4

MPIX_Cart_weighted_create with given weights

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4

MPIX_Cart_weighted_create with given weights

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create With 3 hardware levels (e.g. nodes, CPUs, cores)

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

1 2 2
2 1 3
4 1 2

1. dim
2. dim
3. dim

8 nodes

each with
2 CPUs Each with

12 cores

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create With 3 hardware levels (e.g. nodes, CPUs, cores)

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

1 2 2
2 1 3
4 1 2

1. dim
2. dim
3. dim

8 nodes

each with
2 CPUs Each with

12 cores

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create With 3 hardware levels (e.g. nodes, CPUs, cores)

Whereas last experiment is with cubic data mesh and same start mesh volume = 8

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

1 2 2
2 1 3
4 1 2

1. dim
2. dim
3. dim

8 nodes

each with
2 CPUs Each with

12 cores

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create With 3 hardware levels (e.g. nodes, CPUs, cores)

Whereas last experiment is with cubic data mesh and same start mesh volume = 8

examples for strided data in direction 0 & 1

Slide 309

/ 644

Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1 1 2 4 0 0 0 0 0 0

 2 1 2 4 0 0 0 0 0 0

 3 1 2 4 0 0 0 0 0 0

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4 0 0 0 0 0 0 3 1 2 2 2 1 3 4 1 2

 3 2 2 2 256 1024 4 32 0 0
 0

1 2 2
2 1 3
4 1 2

1. dim
2. dim
3. dim

8 nodes

each with
2 CPUs Each with

12 cores

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create With 3 hardware levels (e.g. nodes, CPUs, cores)

Whereas last experiment is with cubic data mesh and same start mesh volume = 8

examples for strided data in direction 0 & 1
0: marks end of input

Slide 309

