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Course Chap. 9-(2):

Sparse Collective Operations on Process Topologies

• MPI process topologies (Cartesian and (distributed) graph) usable for
communication

– MPI_(I)NEIGHBOR_ALLGATHER(V)
– MPI_(I)NEIGHBOR_ALLTOALL(V,W)

• If the topology is the full graph, then neighbor routine is identical to full collective
communication routine

– Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint

New in MPI-3.0

= perfect scalable !?
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Periodic MPI_NEIGHBOR_ALLTOALL in direction d

with 4 processes
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… grey array entries are used only if periods[d] == non-zero in C  or  .TRUE. in Fortran

rank_source my_rank rank_dest

This figure 
represents 

one 
direction 

d.
Of course, 
it is valid 
for any 

direction

Clarified in MPI-4.0
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As if …

After MPI_NEIGHBOR_ALLTOALL on a Cartesian communicator returned, the content of the recvbuf is 
as if the following code is executed:

MPI_Cartdim_get(comm, &ndims); 

for( /*direction*/ d = 0; d < ndims; d++) {

MPI_Cart_shift(comm, /*direction*/ d, /*disp*/ 1, &rank_source, &rank_dest);

MPI_Sendrecv(sendbuf[d*2+0], sendcount, sendtype, rank_source, /*sendtag*/ d*2,

recvbuf[d*2+1], recvcount, recvtype, rank_dest,   /*recvtag*/ d*2,

comm, &status); /* 1st communication in direction of displacment -1 */

MPI_Sendrecv(sendbuf[d*2+1], sendcount, sendtype, rank_dest,   /*sendtag*/ d*2+1,

recvbuf[d*2+0], recvcount, recvtype, rank_source, /*recvtag*/ d*2+1,

comm, &status); /* 2nd communication in direction of displacment +1 */

}

The tags are chosen to guarantee that both communications (i.e., in negative and positive direction) cannot 
be mixed up, even if the MPI_SENDRECV is substituted by nonblocking communication and the 
MPI_ISEND and MPI_IRECV calls are started in any sequence.

send_buf

recv_buf

-100 +100

+400 -200

-200 +200
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-300 +300

+200 -400

-400 +400

+300 -100

rank_source my_rank rank_dest

MPI_
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Wrong implementations of periodic 

MPI_NEIGHBOR_ALLTOALL with only 2 and 1 processes
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Wrong results with openmpi/4.0.1-gnu-8.3.0 and cray-mpich/7.7.6 with 2 and 1 processes:
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Communication pattern of MPI_NEIGHBOR_ALLGATHER 

sendbuf

recvbuf
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300 200
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100 300
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200 100

100

100 100

… grey array entries are used only if periods[d] == non-zero in C  or  .TRUE. In Fortran
The recv_buf

represents one 
direction d.

Of course, this figure 
is valid for any 

direction

The green recv_buf
elements are

recvbuf[2*d+0] and____
recvbuf[2*d+1] 

Clarified in MPI-4.0

The send_buf is only 
one element, 

which is sent to the 
neighbor processes 

in all directions
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Other MPI features: MPI_BOTTOM and absolute addresses

• MPI_BOTTOM in point-to-point and collective communication:
– Buffer argument is MPI_BOTTOM
– Then absolute addresses can be used in

• Communication routines with byte displacement arguments,

e.g., MPI_(I)NEIGHBOR_ALLTOALLW

• Derived datatypes with byte displacements

– Displacements must be retrieved with MPI_GET_ADDRESS()

Skipped

3.1, 

Separation: 

Separation: 

How to use several independent buffers 
within one MPI call 

Corrections
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Ex
er

ci
se

 5
Exercise 5  — Neighbor Collective Communication

Use         C/Ch9/ring_neighbor_alltoall_skel.c
or                 F_30/Ch9/ring_neighbor_alltoall_skel_30.f90
or                 PY/Ch9/ring_neighbor_alltoall_skel.py

Keep the ring communication in the virtual topology example, but 
substitute the point-to-point communication by neighborhood collective:

– I.e., Isend-Recv-Wait  one call to MPI_Neighbor_alltoall
– rcv_buf and snd_buf must be extended to a rcv_buf_arr and snd_buf_arr

with rcv_buf_arr[0] as rcv_buf and snd_buf_arr[1] as snd_buf,
i.e., according to the sequence rule for the buffer segments.

– snd_count and recv_count are both 1 (not 2!), describing one buffer, not the array
of buffers (i.e., one message)!

rcv_buf of ring =   [0] for source rank

(unused)    [1] for dest rank

rcv_buf_arr
[0] for source rank (unused)

[1] for dest rank = snd_buf of ring

snd_buf_arrrank=0

rank=size-1 rank=1

New in MPI-3.0

…buffers (i.e. one message)!

C

Fortran

Python

In MPI/tasks/… In this example, we ignore the 
communication in the other 

direction. 
Of course in real applications, 
both communications (to the 
left and to the right) are used.
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CAUTION: Officially, this example is not portable, because address differences are allowed only inside

of structures or arrays, i.e., snd_buf and rcv_buf need to be part of a common space  MPI-3.1, 4.1.12 

MPI-4.0, 5.1.12

Exercise 6 (advanced)  —

Neighbor Collective Communication & MPI_BOTTOM

Use      C/Ch9/ring_neighbor_alltoallw_skel.c
or             F_30/Ch9/ring_neighbor_alltoallw_skel_30.f90
or             PY/Ch9/ring_neighbor_alltoallw_skel.py

You start again from the virtual topology example, but substitute the point-to-point 
communication by MPI_NEIGHBOR_ALLTOALLW with MPI_BOTTOM and 
absolute addresses of rcv_buf and snd_buf:

– I.e., Isend-Recv-Wait  one call to MPI_Neighbor_alltoallw
– Fortran: Do not forget to call MPI_F_SYNC_REG for the

real variables behind MPI_BOTTOM (i.e., snd_buf, rcv_buf)
before & after the communication call!

[0] for source rank |   1   | addr(rcv_buf)

[1] for dest rank |   0   | (unused) 0

counts | rcv_displs

[0] for source rank |   0   | (unused) 0

[1] for dest rank |   1   | addr(snd_buf)

rank=size-1 rank=1

New in MPI-3.0

Separation: 

rank=0 counts | snd_displs

C

Fortran

Python

mpi4py may require mem_from_bottom =
MPI.memory.fromaddress(MPI.BOTTOM,0,0) 

and passing mem_from_bottom instead of 
MPI.BOTTOM, e.g., in 

(mem_from_bottom, snd_counts, snd_displs, 
snd_types)

as send buffer in comm.Neighbor_alltoallw(…)
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Quiz on Chapter 9-(2)  – Neighborhood communication

A. Can you think of scenarios where collective neighborhood communication would be
beneficial over nonblocking pt-to-pt communication, and what routines would you use?

1. _______________________
2. _______________________

B. Which alternatives should be considered?
1. _______________________
2. _______________________

C. What must the application programmer in general do to enable these opportunities?
1. _______________________

Slide 283
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• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)
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• Example:
– 2-dim 6000 x 8080 data mesh points
– To be parallelized on 48 cores

• Minimal communication
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8
with 1000 x 1010 mesh points/core

• Hardware example: 48 cores:
– 4 ccNUMA nodes
– each node with 2 CPUs
– each CPU with 6 cores

• How to locate the MPI processes
on the hardware?
– Using sequential ranks in

MPI_COMM_WORLD
– Optimized placement
 See next slides and

example code
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● REC  online

Duplex accumulated ring bandwidth per node

A

B

C

D

What is important?

2 Haswell Intel Xeon E5-2680v3, 
each with 12 cores.
Cray XC40 Aries dragonfly network

Further details 
on the 
benchmarks, 
see next slide
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Duplex accumulated ring bandwidth per node

The limit of accumulated
intra-CPU and intra-node 

bandwidth is 8x larger than 

the limit of accumulated 
node-to-node bandwidth

A

B

C

D

What is important?

8x

2 Haswell Intel Xeon E5-2680v3, 
each with 12 cores.
Cray XC40 Aries dragonfly network

Further details 
on the 
benchmarks, 
see next slide
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Multiple communicating rings

Benchmark MPI/tasks/C/halo-benchmarks/halo_irecv_send_multiplelinks_toggle.c

• Varying message size,
• number of communication cores per CPU, and
• four communication schemes (example with 5 communicating cores per CPU)

CPUseveral cores

node
1

node
2

Intra-CPU: core-to-core

A
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Multiple communicating rings
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Multiple communicating rings

Benchmark MPI/tasks/C/halo-benchmarks/halo_irecv_send_multiplelinks_toggle.c

• Varying message size,
• number of communication cores per CPU, and
• four communication schemes (example with 5 communicating cores per CPU)

CPUseveral cores

node
1

node
2

Intra-CPU: core-to-core

A

CPUseveral
cores

Intra-node: CPU-to-CPU

B

CPUseveral
cores

Inter-node, only

with one CPU

C

Inter-node and

all CPUs communicate

CPUseveral
cores

D
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The problems

1. All MPI libraries provide the necessary interfaces   ,

but without re-numbering in nearly all MPI-libraries   
• You may substitute MPI_Cart_create() by Bill Gropp’s solution

William D. Gropp, Using Node [and Socket] Information to Implement MPI Cartesian Topologies, Parallel Computing, 2019, and
in: Proceedings of the 25th European MPI User' Group Meeting, EuroMPI'18, ACM, New York, NY, USA, 2018, pp. 18:1-18:9.
doi:10.1145/3236367.3236377.  Slides: http://wgropp.cs.illinois.edu/bib/talks/tdata/2018/nodecart-final.pdf.

EuroMPI2018_Niethammer+Rabenseifner_ML

Corrections
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doi:10.1145/3236367.3236377.  Slides: http://wgropp.cs.illinois.edu/bib/talks/tdata/2018/nodecart-final.pdf.

2. The existing MPI-4.1 interfaces are not optimal
 for cluster of ccNUMA node hardware,

• We substitute MPI_Dims_create() +  MPI_Cart_create()
by   MPIX_Cart_weighted_create(… MPIX_WEIGHTS_EQUAL …)

 nor for application specific data mesh sizes
or direction-dependent bandwidth
• by   MPIX_Cart_weighted_create( … weights ….)

EuroMPI2018_Niethammer+Rabenseifner_ML

Corrections
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doi:10.1145/3236367.3236377.  Slides: http://wgropp.cs.illinois.edu/bib/talks/tdata/2018/nodecart-final.pdf.

2. The existing MPI-4.1 interfaces are not optimal
 for cluster of ccNUMA node hardware,

• We substitute MPI_Dims_create() +  MPI_Cart_create()
by   MPIX_Cart_weighted_create(… MPIX_WEIGHTS_EQUAL …)

 nor for application specific data mesh sizes
or direction-dependent bandwidth
• by   MPIX_Cart_weighted_create( … weights ….)

3. Caution: The application must be prepared for rank re-numbering
• All communication through the newly created

Cartesian communicator with re-numbered ranks!
• One must not load data based on MPI_COMM_WORLD ranks!

EuroMPI2018_Niethammer+Rabenseifner_ML

Corrections
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Examples

• Application topology awareness
– 2-D example with 12 MPI processes and data mesh size 1800x580

• MPI_Dims_create  4x3 • data mesh aware   6x2 processes

580
290

300
1800

580
194

450
1800

Boundary of a subdomain = 2(300+290) = 1180 Boundary of a subdomain = 2(450+194) = 1288 
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Examples

• Application topology awareness
– 2-D example with 12 MPI processes and data mesh size 1800x580

• MPI_Dims_create  4x3 • data mesh aware   6x2 processes

• Hardware topology awareness
– 2-D example with 25 nodes x 24 cores and data mesh size 3000x3000

• MPI_Dims_create  25 x 24 • Hardware aware   30 x 20

= (5 nodes x 6 cores)  X  (5 nodes x 4 cores)

580
290

300
1800

580
194

450
1800

600

600

Accumulated

communication

per node

O(4x600) = O(2400) 

Accumulated

communication

per node

O(10x120+12x125) 
= O(2700) 

120

125

Boundary of a subdomain = 2(300+290) = 1180 Boundary of a subdomain = 2(450+194) = 1288 
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Virtual 
location of an 
MPI process 
within an 
SMP node

All MPI 
processes
of an SMP
node

Second and minor 

optimization goal:

Whole intra-node 
communication must be 
minimized!

Hierarchical Cartesian Domain Decomposition

Example:
24 SMP nodes 

X 
32 cores/node

Per node:
maximal

8+8+8+8+16+16*)=
48 or 64*)

connections
to neighbor 

nodes
*) with cyclic communication 

Primary and main 

optimization goal:

Whole communication 
from each node to all of 
its neighbors must be 
minimized!
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Virtual 
location of an 
MPI process 
within an 
SMP node

All MPI 
processes
of an SMP
node

Second and minor 

optimization goal:

Whole intra-node 
communication must be 
minimized!

Hierarchical Cartesian Domain Decomposition

Example:
24 SMP nodes 

X 
32 cores/node

Per node:
maximal

8+8+8+8+16+16*)=
48 or 64*)

connections
to neighbor 

nodes
*) with cyclic communication 

Without 
topology-

optimization:
96 connections
to other nodes

2 or 1.6*) times slower
communication

Primary and main 

optimization goal:

Whole communication 
from each node to all of 
its neighbors must be 
minimized!
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Goals of MPI_Dims_create + MPI_Cart_create

• Given: comm_old (e.g., MPI_COMM_WORLD),  ndims (e.g., 3 dimensions)

• Provide

– a factorization of #processes (of comm_old) into the dimensions dims[𝒊]𝑖=1..ndims

– a Cartesian communicator comm_cart

– a optimized reordering of the ranks in comm_old into the ranks of comm_cart
to minimize the Cartesian communication time, e.g., of

• MPI_Neighbor_alltoall

• Equivalent communication pattern implemented with

– MPI_Sendrecv

– Nonblocking MPI point-to-point communication

Slide 292
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The limits of MPI_Dims_create + MPI_Cart_create

• Not application topology aware
– MPI_Dims_create can only map evenly balanced Cartesian topologies

• Factorization of 48,000 processes into 20 x 40 x 60 processes
(e.g. for a mesh with 200 x 400 x 600 mesh points)
 no chance with current interface
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• Not application topology aware
– MPI_Dims_create can only map evenly balanced Cartesian topologies

• Factorization of 48,000 processes into 20 x 40 x 60 processes
(e.g. for a mesh with 200 x 400 x 600 mesh points)
 no chance with current interface

• Only partially hardware topology aware
– MPI_Dims_create has no communicator argument  not hardware aware

• An application mesh with 3000x3000 mesh points
on 25 nodes x 24 cores (=600 MPI processes)

– Answer from MPI_Dims_create:

» 25 x 24 MPI processes

» Mapped by most libraries to 25 x 1 nodes
with 120x3000 mesh points per node
 too much node-to-node communication
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The limits of MPI_Dims_create + MPI_Cart_create

• Not application topology aware
– MPI_Dims_create can only map evenly balanced Cartesian topologies

• Factorization of 48,000 processes into 20 x 40 x 60 processes
(e.g. for a mesh with 200 x 400 x 600 mesh points)
 no chance with current interface

• Only partially hardware topology aware
– MPI_Dims_create has no communicator argument  not hardware aware

• An application mesh with 3000x3000 mesh points
on 25 nodes x 24 cores (=600 MPI processes)

– Answer from MPI_Dims_create:

» 25 x 24 MPI processes

» Mapped by most libraries to 25 x 1 nodes
with 120x3000 mesh points per node
 too much node-to-node communication

Major problems:
• No weights,
no info

• Two separated
interfaces for
two common
tasks:
 Factorization of

#processes
 Mapping of the

processes to
the hardware
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Goals of Cartesian MPI_Dims + Cart_create

• Remark: On a hierarchical hardware,
– optimized factorization and reordering typically means

minimal node-to-node communication,
– which typically means that the communicating surfaces

of the data on each node is as quadratic1) as possible
(or the subdomain as cubic1) as possible)

• The current API, i.e.,
– due to the missing weights
– and the non-hardware aware MPI_Dims_create,

does not allow such an optimized factorization and reordering in many cases. 

Slide 294

1) “quadratic” and “cubic” may be qualified due to different communication bandwidth
in each direction caused by sending (fast) non-strided or (slow) strided data
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The new interface   – proposed for MPI-4.1

• MPI_Dims_create_weighted (
/*IN*/ int nnodes,
/*IN*/ int ndims,
/*IN*/ int dim_weights[ndims],
/*IN*/ int periods[ndims], /* for future use in

combination with info */
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */

/*INOUT*/ int dims[ndims]);

– Arguments have same meaning as in MPI_Dims_create

– Goal (in absence of an info argument):

• dims[i]•dim_weights[i] should be as close as possible,

• i.e., the ∑i=0..(ndims-1) dims[i]•dim_weights[i] as small as possible
(advice to implementors)

input for application-topology-awareness
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The new interface   – proposed for MPI-4.1

• MPI_Dims_create_weighted (
/*IN*/ int nnodes,
/*IN*/ int ndims,
/*IN*/ int dim_weights[ndims],
/*IN*/ int periods[ndims], /* for future use in

combination with info */
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */

/*INOUT*/ int dims[ndims]);

– Arguments have same meaning as in MPI_Dims_create

– Goal (in absence of an info argument):

• dims[i]•dim_weights[i] should be as close as possible,

• i.e., the ∑i=0..(ndims-1) dims[i]•dim_weights[i] as small as possible
(advice to implementors)

A new 
courtesy 
function:
Weighted 

factorization

input for application-topology-awareness
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The new interface   – proposed for MPI-4.1,  continued

• MPI_Cart_create_weighted (
/*IN*/ MPI_Comm comm_old, 
/*IN*/ int ndims, 
/*IN*/ int dim_weights[ndims], /*or MPI_UNWEIGHTED*/
/*IN*/ int periods[ndims], 
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */
/*INOUT*/ int dims[ndims], 

/*OUT*/ MPI_Comm *comm_cart );

– Arguments have same meaning as in MPI_Dims_create & MPI_Cart_create

– See next slide for meaning of dim_weights[ndims]

– Goal: chooses
• an ndims-dimensional factorization of #processes of comm_old ( dims)
• and an appropriate reordering of the ranks ( comm_cart),

such that the execution time of a communication step along the virtual process grid 
(e.g., with MPI_NEIGHBOR_ALLTOALL or equivalent calls to MPI_SENDRECV 

is as small as possible.

input for hardware-awareness

input for application-
topology-awareness
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The new interface   – proposed for MPI-4.1,  continued

• MPI_Cart_create_weighted (
/*IN*/ MPI_Comm comm_old, 
/*IN*/ int ndims, 
/*IN*/ int dim_weights[ndims], /*or MPI_UNWEIGHTED*/
/*IN*/ int periods[ndims], 
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */
/*INOUT*/ int dims[ndims], 

/*OUT*/ MPI_Comm *comm_cart );

– Arguments have same meaning as in MPI_Dims_create & MPI_Cart_create

– See next slide for meaning of dim_weights[ndims]

– Goal: chooses
• an ndims-dimensional factorization of #processes of comm_old ( dims)
• and an appropriate reordering of the ranks ( comm_cart),

such that the execution time of a communication step along the virtual process grid 
(e.g., with MPI_NEIGHBOR_ALLTOALL or equivalent calls to MPI_SENDRECV 

is as small as possible.

The new 
application 
& hardware 
topology 
aware 
interface 

input for hardware-awareness

input for application-
topology-awareness
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How to specify the dim_weights?

• Given: comm_old (e.g., MPI_COMM_WORLD),  ndims (e.g., 3 dimensions)

• This means, the domain decomposition has not yet taken place!

• Goals for dim_weights and the API at all:
– Easy to understand
– Easy to calculate
– Relevant for typical Cartesian communication patterns

(MPI_Neighbor_alltoall or alternatives)
– Rules fit to usual design criteria of MPI

• E.g., reusing MPI_UNWEIGHTED  integer array
• Can be enhanced by vendors for their platforms
 additional info argument for further specification

• To provide also the less optimal two stage interface
(in addition to the combined routine)
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The dim_weights[𝑖], example with 3 dimensions

The arguments dim_weights[𝒊] 𝑖 =0::(ndims-1), abbreviated with 𝒘𝒊,
should be specified as the accumulated message size (in bytes) 
communicated in one communication step through each cutting plane 

orthogonal to dimension 𝑑𝑖 and in each of the two directions.1)

𝑤1 𝑤1 𝑤1

𝑤1

𝑑0𝑑2
(=𝑤1𝑑1

ς𝑖 𝑑𝑖
)

𝑑1(=4)

𝑑
2
(=

3
)

Cutting plane orthogonal to dimension 1

periods[0]
=false

periods[1]=false

periods[2]=true

1

2

0

Three dimensions,

i.e., ndims=3

Abbreviations: 

𝑑𝑖 = dims[𝑖]
𝑤𝑖 = dim_weights[𝑖]
with

𝑖 = 0..(ndims-1)

Slide 298
1) If the communication bandwidth is different in each direction 𝑖, then
𝑤𝑖 should be divided by the expected communication bandwidth.
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The dim_weights[𝑖], example with 3 dimensions, continued

Example for the calculation of the accumulated communication size 𝑤𝑖,𝑖=0..2

in each dimension. 
• 𝑔𝑖 – The data mesh sizes 𝑔𝑖,𝑖=0..2 express the three dimensions

of the total application data mesh. 
• ℎ𝑖 – The value ℎ𝑖 represents the halo width in a given direction

when the 2-dimensional side of a subdomain is communicated
to the neighbor process in that direction.

Output from MPI_Cart/Dims_create_weighted: The dimensions 𝑑𝑖,𝑖=0..2

Distributed 

into the 

sub-domains 

on each MPI
process

𝑔0

𝑔0
𝑑0

𝑑0

𝑔1
𝑔1
𝑑1

𝑑1

𝑔2
𝑔2
𝑑2

𝑑2

ℎ0

ℎ2

ℎ1

𝑤1 = 𝑔0ℎ1𝑔2 = ℎ1
ς𝑖 𝑔𝑖
𝑔1

Accumulated communication size through

cutting plane orthogonal to dimension 110

dimensions

2

Abbreviations: 𝑔𝑖 = data mesh size in dimension 𝑖, 𝑖=0..(ndims-1), 𝑤𝑖 = dim_weights[𝑖],
ℎ𝑖 = halo width in dimension 𝑖, 𝑑𝑖 = dims[𝑖]

Global data mesh
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The dim_weights[𝑖], example with 3 dimensions, continued

Example for the calculation of the accumulated communication size 𝑤𝑖,𝑖=0..2

in each dimension. 
• 𝑔𝑖 – The data mesh sizes 𝑔𝑖,𝑖=0..2 express the three dimensions

of the total application data mesh. 
• ℎ𝑖 – The value ℎ𝑖 represents the halo width in a given direction

when the 2-dimensional side of a subdomain is communicated
to the neighbor process in that direction.

Output from MPI_Cart/Dims_create_weighted: The dimensions 𝑑𝑖,𝑖=0..2

Distributed 

into the 

sub-domains 

on each MPI
process

𝑔0

𝑔0
𝑑0

𝑑0

𝑔1
𝑔1
𝑑1

𝑑1

𝑔2
𝑔2
𝑑2

𝑑2

ℎ0

ℎ2

ℎ1

𝑤1 = 𝑔0ℎ1𝑔2 = ℎ1
ς𝑖 𝑔𝑖
𝑔1

Accumulated communication size through

cutting plane orthogonal to dimension 110

dimensions

2

Abbreviations: 𝑔𝑖 = data mesh size in dimension 𝑖, 𝑖=0..(ndims-1), 𝑤𝑖 = dim_weights[𝑖],
ℎ𝑖 = halo width in dimension 𝑖, 𝑑𝑖 = dims[𝑖]

Global data mesh

Important:

• The definition of
the dim_weights
(= 𝑤𝑖 in this
figure)
is independent
of the total
number of
processes and
its factorization
into the
dimensions
(= 𝑑𝑖 in this
figure)

• Result1) was

𝑤𝑖= ℎ𝑖
ς𝑗𝑔𝑗

𝑔𝑖
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Simple answers to our problems / examples

• Existing API is not application topology aware
• Factorization of 48,000 processes into 20 x 40 x 60 processes
 no chance with current API
(e.g. for a mesh with 200 x 400 x 600 mesh points)

• Use MPI_Cart_create_weighted with the dim_weights=(N/200, N/400, N/600)
with N=200•400•600

• Existing API is only partially hardware topology aware
• An application mesh with 3000x3000 mesh points  (i.e., example with MPI_UNWEIGHTED)

on 25 nodes x 24 cores (=600 MPI processes)
– Current API must factorize into 25 x 24 MPI processes

» 25 x 1 nodes  120x3000 mesh points  too much node to node communication

– Optimized answer from MPI_Cart_create_weighted may be:
» 30 x 20 MPI processes
» Mapped to 5 x 5 nodes with 600x600 mesh points per node
 minimal node-to-node communication

Corrections fro. 2022
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The new interfaces – a real implementation

Substitute for / enhancement to existing MPI-1
• MPI_Dims_create (size_of_comm_old, ndims, dims[ndims] );
• MPI_Cart_create (comm_old, ndims, dims[ndims], periods, reorder, *comm_cart);

New: (in MPI/tasks/C/Ch9/MPIX/)

• MPIX_Cart_weighted_create (
/*IN*/ MPI_Comm comm_old, 
/*IN*/ int ndims, 
/*IN*/ double dim_weights[ndims], /*or MPIX_WEIGHTS_EQUAL*/
/*IN*/ int periods[ndims], 
/*IN*/ MPI_Info info,         /* for future use, currently MPI_INFO_NULL */
/*INOUT*/ int dims[ndims], 

/*OUT*/ MPI_Comm *comm_cart );

– Arguments have same meaning as in MPI_Dims_create & MPI_Cart_create

– See next slide for meaning of dim_weights[ndims]

• MPIX_Dims_weighted_create ( int nnodes, int ndims, double dim_weights[ndims],
/*OUT*/ int dims[ndims] );
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Further Interfaces

We proposed the algorithm in
• Christoph Niethammer and Rolf Rabenseifner. 2018. 

Topology aware Cartesian grid mapping with MPI. 
EuroMPI 2018. https://eurompi2018.bsc.es/
 Program Poster Session Abstract+Poster

MPIX_Dims_weighted_create() is based on the ideas in:
• Jesper Larsson Träff and Felix Donatus Lübbe. 2015.

Specification Guideline Violations by MPI Dims Create.

In Proceedings of the 22nd European MPI Users’ Group Meeting (EuroMPI ’15). ACM, New
York, NY, USA, Article 19, 2 pages.

Full paper:
• Christoph Niethammer, Rolf Rabenseifner:

An MPI interface for application and hardware aware cartesian topology optimization.

EuroMPI 2019. Proceedings of the 26th European MPI Users' Group Meeting, September
2019, article No. 6, pages 1-8, https://doi.org/10.1145/3343211.3343217
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Remarks

• The portable MPIX routines internally use
MPI_Comm_split_type(…, MPI_COMM_TYPE_SHARED, …)
to split comm_old into ccNUMA nodes,

• plus (may be) additionally splitting into NUMA domains.
• With using hyperthreads, it may be helpful

to apply sequential ranking to the hyperthreads,
– i.e., in MPI_COMM_WORLD, ranks 0+1 should be

• the first two hyperthreads

• of the first core
• of the first CPU
• of the first ccNUMA node

• Especially with weights 𝒘𝒊 based on 𝐺
𝑔𝑖

, it is important
– that the data of the mesh points is not read in based on (old) ranks in

MPI_COMM_WORLD,
– because the domain decomposition must be done based on

comm_cart and its dimensions and (new) ranks
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Typical use of MPIX_Cart_weighted_create

#define ndims 3

int i, nnodes, world_myrank, cart_myrank, dims[ndims], periods[ndims], my_coords[ndims];

int global_array_dim[ndims], halo_width[ndims], local_array_dim[ndims], local_array_size=1;

double dim_weights[ndims], global_array_size=1.0;

MPI_Comm comm_cart;

MPI_Init(NULL,NULL);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &world_myrank);

for (i=0; i<ndims; i++) {

dims[i]=0; periods[i]=…;

global_array_dim[i]=…; halo_width[i]=…;

global_array_size = global_array_size * (double)(global_array_dim[i]);

}

for (i=0; i<ndims; i++) { 

dim_weights[i] = (double)(halo_width[i]) * global_array_size / (double)(global_array_dim[i]);

}  

MPIX_Cart_weighted_create(MPI_COMM_WORLD, ndims, dim_weights, dims, periods, MPI_INFO_NULL, dims, 

&comm_cart);

MPI_Comm_rank(comm_cart, &cart_myrank);

MPI_Cart_coords(comm_cart, cart_myrank, ndims, my_coords, ierror)

for (i=0; i<ndims; i++) { 

local_array_dim[i] = global_array_dim[i] / dims[i];

local_array_dim[i] … adjust it if the division has a remainder

local_array_size = local_array_size * local_array_dim[i];

}  

local_data_array = malloc(sizeof(…) * local_array_size);

From now on: 
 all communication should be based

on comm_cart & cart_myrank & my_coords
 one can setup the sub-domains

& read in the application data

Weights: 𝑤𝑖= ℎ𝑖
ς𝑗 𝑔𝑗

𝑔𝑖
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1) Ricard Borrell, Juan Carlos García Cajas, Daniel Mira,
Ahmed Taha, Seid Koric, et al.. Parallel mesh partitioning
based on space filling curves. Computers and Fluids,
2018, 173, pp.264-272.
ff10.1016/j.compfluid.2018.01.040ff. ffhal-01969026f

2) D. F. Harlacher, H. Klimach, S. Roller, C. Siebert and F.
Wolf, "Dynamic Load Balancing for Unstructured Meshes
on Space-Filling Curves," 2012 IEEE 26th International
Parallel and Distributed Processing Symposium
Workshops & PhD Forum, Shanghai, China, 2012, pp.
1661-1669, doi: 10.1109/IPDPSW.2012.207.
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finite element meshes using space-filling curves, Future
Generation Computer Systems, Volume 21, Issue 5,
2005, Pages 759-766, ISSN 0167-739X,
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Unstructured Grid / Data Mesh

Mesh partitioning with special load balancing libraries
– Metis & ParMetis (George Karypis, University of Minnesota)

• http://glaros.dtc.umn.edu/gkhome/views/metis/metis.html

– Scotch & PT-Scotch  (Francois Pellegrini, LaBRI, France)
• https://www.labri.fr/perso/pelegrin/scotch/

– Alternative partitioning via space-filling curves, e.g.,
• https://hal.science/hal-01969026/document 1)

• https://doi.org/10.1109/IPDPSW.2012.207 2)

• https://doi.org/10.1016/j.future.2004.05.018 3)

– Goals:
• Same work load in each sub-domain

• Minimizing the maximal number

of neighbor-connections

between sub-domains

• Minimizing the total number

of neighbor sub-domains

of each sub-domain
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Result of mesh 
partitioning:

Sort out all mesh 
elements into sub-

domains

Each sub-domain 
is stored on one 

MPI process
The weighted communication graph of the 

virtual process grid can be used as input for 
MPI_Dist_graph_create(_adjacent) 
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Exercise: 

Adding a Cartesian Topology

• Given: a 3-D halo communication benchmark using irecv + send
– cd  MPI/tasks/C/Ch9/MPIX/

– mpicc course/C/Ch9/halo_irecv_send_toggle_3dim_grid_skel.c  MPIX*.c  -lm
• The application uses a 3-D Cartesian communicator.

• From this one, it uses 1-D line communicators for communicating in the 3 dimensions

• Overview on the to-do’s:
– “substituting” the not reordered Cartesian topology (cart_method==1)

through an optimizing algorithm (cart_method==2,3,4) 
• cart_method==2: Add MPIX_Cart… (…MPI_WEIGHTS_EQUAL…)

• cart_method==3: Calculate the weights based on

meshsize_avg_per_proc_startval

Add MPIX_Cart… (…weights…)

• cart_method==4: same as with cart_method==3, but without weights-calculation

– Or just use  halo_irecv_send_toggle_3dim_grid.c  and look at the diff
• diff  halo_irecv_send_toggle_3dim_grid_skel.c  halo_irecv_send_toggle_3dim_grid.c

– Measure the  communication bandwidth win
• For default mesh size 2 / 2 / 2

• For other mesh sizes, e.g., 1 / 2 / 4

My apologies for 
missing Fortran

See
/* TODO

lines 

Ex
er

ci
se

• This exercise is part of our Hybrid MPI+X course
• It is not part of our MPI courses, but
• we provide it here for you as a

self-study exercise / example.
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Exercise: Explanations

• Input per measurement, e.g.on 8 nodes x 2 CPUs x 12 cores: Example
– cart_method: 2

• 1=Dims_create+Cart_create,

• 2=Cart_weighted_create

(MPIX_WEIGHTS_EQUAL), 

• 3=dito(weights),

• 4=dito manually,

• 5=Cart_ml_create(dims_ml),

• 0=end of input

– Data mesh sizes, integer start values (= ratio) 1    2    4
– Using MPI_Type_vector, for each dimension a pair of blocklength&stride 0 0   0 0   0 0
– weights (double values) (only with cart_method==4) 1.00  0.50  0.25
– number of hardware levels (only with cart_method==5) 3

dims_ml: for each of the 3 Cartesian dimensions a list of 3 dimensions from
outer to inner hardware level, e.g., 8 nodes x 2 CPUs x 12 cores are split into
1x2x4 nodes  x  2x1x1 CPUs  x  2x3x2 cores

• dims_ml[d=0] = 1  2   2
• dims_ml[d=1] = 2  1   3
• dims_ml[d=2] = 4   1  2

Column 1

Columns 2-4

Columns 5-10

Columns 11-13

Column 11

Columns 12-14
15-17
18-20
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Column 1

Columns 2-4

Columns 5-10

Columns 11-13

Column 11

Columns 12-14
15-17
18-20

Start a 8 or 12-node batch-job with 
your own input file:
Report your acceleration factors 

to the course group
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Exercise: Explanations

• Input per measurement, e.g.on 8 nodes x 2 CPUs x 12 cores: Example
– cart_method: 2

• 1=Dims_create+Cart_create,

• 2=Cart_weighted_create

(MPIX_WEIGHTS_EQUAL), 

• 3=dito(weights),

• 4=dito manually,

• 5=Cart_ml_create(dims_ml),

• 0=end of input

– Data mesh sizes, integer start values (= ratio) 1    2    4
– Using MPI_Type_vector, for each dimension a pair of blocklength&stride 0 0   0 0   0 0
– weights (double values) (only with cart_method==4) 1.00  0.50  0.25
– number of hardware levels (only with cart_method==5) 3

dims_ml: for each of the 3 Cartesian dimensions a list of 3 dimensions from 
outer to inner hardware level, e.g., 8 nodes x 2 CPUs x 12 cores are split into
1x2x4 nodes  x  2x1x1 CPUs  x  2x3x2 cores

• dims_ml[d=0] = 1  2   2
• dims_ml[d=1] = 2  1   3
• dims_ml[d=2] = 4   1  2

Column 1

Columns 2-4

Columns 5-10

Columns 11-13

Column 11

Columns 12-14
15-17
18-20

Start a 8 or 12-node batch-job with 
your own input file:
Report your acceleration factors 

to the course group

These base values (per process) are multiplied with 
3 #𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 and then with  1, 2, 4, 8, … 512, 
e.g., with 192 processes: 2 ∙

3
192 ∙ 512 = 5910

(rounded to a multiple of the dim. of the process grid).
See also later the slide explaining the output.
Recommendation for several experiments: Use the same 
initial mesh volume (here 8), e.g., 1x2x4, 2x2x2, 4x2x1.
Note that this application data mesh volume is completely in-
dependent of the number of hardware nodes, CPUs, cores.
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Exercise: Explanations

• Input per measurement, e.g.on 8 nodes x 2 CPUs x 12 cores: Example
– cart_method: 2

• 1=Dims_create+Cart_create,

• 2=Cart_weighted_create

(MPIX_WEIGHTS_EQUAL), 

• 3=dito(weights),

• 4=dito manually,

• 5=Cart_ml_create(dims_ml),

• 0=end of input

– Data mesh sizes, integer start values (= ratio) 1    2    4
– Using MPI_Type_vector, for each dimension a pair of blocklength&stride 0 0   0 0   0 0
– weights (double values) (only with cart_method==4) 1.00  0.50  0.25
– number of hardware levels (only with cart_method==5) 3

dims_ml: for each of the 3 Cartesian dimensions a list of 3 dimensions from 
outer to inner hardware level, e.g., 8 nodes x 2 CPUs x 12 cores are split into
1x2x4 nodes  x  2x1x1 CPUs  x  2x3x2 cores

• dims_ml[d=0] = 1  2   2
• dims_ml[d=1] = 2  1   3
• dims_ml[d=2] = 4   1  2

0 0 = contiguous

Column 1

Columns 2-4

Columns 5-10

Columns 11-13

Column 11

Columns 12-14
15-17
18-20

Start a 8 or 12-node batch-job with 
your own input file:
Report your acceleration factors 

to the course group

These base values (per process) are multiplied with 
3 #𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 and then with  1, 2, 4, 8, … 512, 
e.g., with 192 processes: 2 ∙

3
192 ∙ 512 = 5910

(rounded to a multiple of the dim. of the process grid).
See also later the slide explaining the output.
Recommendation for several experiments: Use the same
initial mesh volume (here 8), e.g., 1x2x4, 2x2x2, 4x2x1.
Note that this application data mesh volume is completely in-
dependent of the number of hardware nodes, CPUs, cores.
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated 
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4 
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4    0 0 0 0 0 0 4. 2. 1. 

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated 
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4 

MPIX_Cart_weighted_create with given weights
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4    0 0 0 0 0 0 4. 2. 1. 

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated 
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4 

MPIX_Cart_weighted_create with given weights
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4    0 0 0 0 0 0 4. 2. 1. 

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated 
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4 

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4    0 0 0 0 0 0 4. 2. 1. 

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated 
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4 

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create With 3 hardware levels (e.g. nodes, CPUs, cores)
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4    0 0 0 0 0 0 4. 2. 1. 

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

1 2 2
2 1 3
4 1 2

1. dim
2. dim
3. dim

8 nodes

each with
2 CPUs Each with

12 cores

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated 
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4 

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create With 3 hardware levels (e.g. nodes, CPUs, cores)
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

1 2 2
2 1 3
4 1 2

1. dim
2. dim
3. dim

8 nodes

each with
2 CPUs Each with

12 cores

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated 
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4 

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create With 3 hardware levels (e.g. nodes, CPUs, cores)

Whereas last experiment is with cubic data mesh and same start mesh volume = 8
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4    0 0 0 0 0 0 4. 2. 1. 

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

1 2 2
2 1 3
4 1 2

1. dim
2. dim
3. dim

8 nodes

each with
2 CPUs Each with

12 cores

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated 
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4 

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create With 3 hardware levels (e.g. nodes, CPUs, cores)

Whereas last experiment is with cubic data mesh and same start mesh volume = 8

examples for strided data in direction 0 & 1
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Exercise: Explanations, continued

• Input can be concatenated to one line per experiment:

 1  1 2 4 0 0 0 0 0 0

 2  1 2 4 0 0 0 0 0 0 

 3  1 2 4 0 0 0 0 0 0 

 4 1 2 4 0 0 0 0 0 0 4. 2. 1.

 5 1 2 4  0 0 0 0 0 0 3  1 2 2   2 1 3    4 1 2

 3  2 2 2  256 1024 4 32 0 0
 0

1 2 2
2 1 3
4 1 2

1. dim
2. dim
3. dim

8 nodes

each with
2 CPUs Each with

12 cores

MPI_Dims_create

+ MPI_Cart_create
All these experiments use a data mesh ratio of 1 x 2 x 4 and start mesh volume = 8

Contiguous data in all three directions 
MPIX_Cart_weighted_create

with MPIX_WEIGHTS_EQUAL

MPIX_Cart_weighted_create with weights calculated 
as reciprocal value of the mesh sizes, i.e., 1./1 , 1./2, 1./4 

MPIX_Cart_weighted_create with given weights

MPIX_Cart_ml_create With 3 hardware levels (e.g. nodes, CPUs, cores)

Whereas last experiment is with cubic data mesh and same start mesh volume = 8

examples for strided data in direction 0 & 1
0: marks end of input
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