
Parallel programming / computation
Sultan ALPAR
s.alpar@iitu.edu.kz

IITU

Lecture 10
Parallel File I/O

pri.note

has

Corrections from 2022

Corrections fro. 2022

Corrections fro. 2022

Corrections

Corrections from 2022

Corr.

Corrections from 2023

Corrections from 2023

Corrections fro. 2024

Corr.

/ 644

Outline

• Block 1

– Introduction [323]
– Definitions [328]
– Open / Close [330]
– WRITE / Explicit Offsets [335]
– Exercise 1 [336]

• Block 2

– File Views [338]
– Subarray & Darray [342]
– I/O Routines Overview [350]
– READ / Explicit Offsets [352]
– Individual File Pointer [353]
– Exercise 2 [355]

• Block 3

– Shared File Pointer [358]
– Collective [360]
– Non-Blocking / Split Collective [364/365]
– Other Routines [368]
– Error Handling [369]
– Implementation Restrictions [370]
– Summary [371]
– Exercise 3 [372]
– Exercise 4 [373]

I/O
 –

O
ut

lin
e

 /

 B

lo
ck

 1

Slide 474

/ 644

Motivation, I.

If you have thousands of MPI processes

& each has to write/read data to/from a file

• Opening thousands of file in a parallel file system can be extremely slow

• Writing 1000s of files  reading in by a different number of processes  hard

Slide 475

Corrections from 2023

Corrections from 2023

/ 644

Motivation, I.

If you have thousands of MPI processes

& each has to write/read data to/from a file

• Opening thousands of file in a parallel file system can be extremely slow

• Writing 1000s of files  reading in by a different number of processes  hard

MPI parallel file I/O offers
• A method to write/read data by all processes to/from one common (large) file
• Supports disk striping for this one file
• Is also the internal basis for parallel netCDF and HDF5

Slide 475

Corrections from 2023

Corrections from 2023

/ 644

Motivation, I.

If you have thousands of MPI processes

& each has to write/read data to/from a file

• Opening thousands of file in a parallel file system can be extremely slow

• Writing 1000s of files  reading in by a different number of processes  hard

MPI parallel file I/O offers
• A method to write/read data by all processes to/from one common (large) file
• Supports disk striping for this one file
• Is also the internal basis for parallel netCDF and HDF5

Historically
• This parallel I/O interface was included into MPI because it totally fits to the principles of

message passing  next motivation slides (skipped)

Slide 475

Corrections from 2023

Corrections from 2023

/ 644

Motivation, I.

If you have thousands of MPI processes

& each has to write/read data to/from a file

• Opening thousands of file in a parallel file system can be extremely slow

• Writing 1000s of files  reading in by a different number of processes  hard

MPI parallel file I/O offers
• A method to write/read data by all processes to/from one common (large) file
• Supports disk striping for this one file
• Is also the internal basis for parallel netCDF and HDF5

Historically
• This parallel I/O interface was included into MPI because it totally fits to the principles of

message passing  next motivation slides (skipped)

Other options
• Small #processes  just send the data to process 0 for non-parallel I/O
• Use several dedicated MPI processes for asynchronous I/O  “ICON” in course chapter 8-(1)

– fetching the data with MPI_Get, and
– writing it to several files or one file with MPI I/O

Slide 475

Corrections from 2023

Corrections from 2023

/ 644

Motivation, II.

• Many parallel applications need
– coordinated parallel access to a file by a group of processes
– simultaneous access
– all processes may read/write many (small) non-contiguous

pieces of the file,
i.e. the data may be distributed amongst the processes
according to a partitioning scheme

– all processes may read the same data

• Efficient collective I/O based on
– fast physical I/O by several processors, e.g. striped
– distributing (small) pieces by fast message passing

Slide 476

/ 644

Motivation, III.

• Analogy: writing / reading a file is like
sending/receiving a message

• Handling parallel I/O needs
– handling groups of processes  MPI topologies and groups
– collective operations  file handle defined like

communicators
– nonblocking operations  MPI_I..., MPI_Wait, ...

to overlap computation & I/O & new split collective
interface

– non-contiguous access  MPI derived datatypes

Slide 477

/ 644

MPI-I/O Features

• Provides a high-level interface to support
– data file partitioning among processes
– transfer global data between memory and files (collective I/O)
– asynchronous transfers
– strided access

• MPI derived datatypes used to specify common data access
patterns for maximum flexibility and expressiveness

Slide 478

/ 644

MPI-I/O, Principles

• MPI file contains elements of a single MPI datatype (etype)

• partitioning the file among processes with an access template
(filetype)

• all file accesses transfer to/from a contiguous or
non-contiguous user buffer (MPI datatype)

• nonblocking / blocking and collective / individual read / write
routines

• individual and shared file pointers, explicit offsets

• binary I/O

• automatic data conversion in heterog. systems

• file interoperability with external representation

Slide 479

/ 644

Logical view / Physical view

mpi processes of a communicator

file, physical view

file, logical view

addressed
only by hints

scope of
MPI-I/O

Slide 480

/ 644

Definitions

etype (elementary datatype)

filetype process 2

file displacement (number of header bytes)

filetype process 0
filetype process 1

file

holes

tiling a file with filetypes:

0 5
1 6
2 3 4 7 8 9 view of process 2

view of process 0
view of process 1

0 1 2 3 4 5 6 7 8 9

I/O
 –

D
ef

in
iti

on
s

Slide 481

/ 644

Comments on Definitions

file - an ordered collection of typed data items

etypes - is the unit of data access and positioning / offsets
- can be any basic or derived datatype

(with non-negative, monotonically non-decreasing, non-absolute displacem.)

- generally contiguous, but need not be
- typically same at all processes

filetypes - the basis for partitioning a file among processes
- defines a template for accessing the file
- different at each process
- the etype or derived from etype (displacements:

non-negative, monoton. non-decreasing, non-abs., multiples of etype extent)

view - each process has its own view, defined by:
a displacement, an etype, and a filetype.

- The filetype is repeated, starting at displacement

offset - position relative to current view, in units of etype

Slide 482

/ 644

Opening an MPI File

• MPI_File_open is collective over comm
• filename’s namespace is

implementation-dependent!
• filename must reference the same file

on all processes
• process-local files can be opened by passing MPI_COMM_SELF as

comm

• returns a file handle fh
[represents the file, the process group of comm, and the current view]

MPI_File_open(comm, filename, amode, info, fh)

I/O
 –

O
pe

n
/ C

lo
se

C/C++Fortran language bindings – see MPI Standard
and mpi4py

MPI instead of MPI

Python

Slide 483

/ 644

Default View

• Default:
– displacement = 0 each process
– etype = MPI_BYTE has access to
– filetype = MPI_BYTE the whole file

• Sequence of MPI_BYTE matches with any datatype
(see MPI-3.1/MPI-4.0, Section 13/14.6.6 on page 549/714)

• Binary I/O (no ASCII text I/O)

MPI_File_open(comm, filename, amode, info, fh)

file0 1 2 3 4 5 6 7 8 9

view of process 00 1 2 3 4 5 6 7 8 9

view of process 10 1 2 3 4 5 6 7 8 9

view of process 20 1 2 3 4 5 6 7 8 9

3.1,

Slide 484

/ 644

Access Modes

• same value of amode on all processes in MPI_File_open

• Bit vector OR of integer constants (Fortran 77: +)
– MPI_MODE_RDONLY - read only
– MPI_MODE_RDWR - reading and writing
– MPI_MODE_WRONLY - write only
– MPI_MODE_CREATE - create if file doesn’t exist
– MPI_MODE_EXCL - error creating a file that exists
– MPI_MODE_DELETE_ON_CLOSE - delete on close
– MPI_MODE_UNIQUE_OPEN - file not opened concurrently
– MPI_MODE_SEQUENTIAL - file only accessed sequentially:

mandatory for sequential stream files (pipes, tapes, ...)
– MPI_MODE_APPEND - all file pointers set to end of file

[caution: reset to zero by any subsequent MPI_FILE_SET_VIEW]

Slide 485

/ 644

File Info: Reserved Hints

• Argument in MPI_File_open, MPI_File_set_view, MPI_File_set_info

• reserved key values:
– collective buffering

• “collective_buffering”: specifies whether the application may benefit from collective buffering

• “cb_block_size”: data access in chunks of this size

• “cb_buffer_size”: on each node, usually a multiple of block size

• “cb_nodes”: number of nodes used for collective buffering

– disk striping (only relevant in MPI_FILE_OPEN)
• “striping_factor”: number of I/O devices used for striping

• “striping_unit”: length of a chunk on a device (in bytes)

• MPI_INFO_NULL may be passed

Slide 486

/ 644

Closing and Deleting a File

• Close: collective

• Delete:
– automatically by MPI_FILE_CLOSE

if amode=MPI_DELETE_ON_CLOSE | ...

was specified in MPI_FILE_OPEN
– deleting a file that is not currently opened:

[same implementation-dependent rules as in MPI_FILE_OPEN]

MPI_File_close(fh)

MPI_File_delete(filename, info)

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 487

/ 644

Writing with Explicit Offsets

• writes count elements of datatype from memory buf to the file
• starting offset * units of etype

from begin of view
• the elements are stored into the locations of the current view
• the sequence of basic datatypes of datatype

(= signature of datatype)
must match
contiguous copies of the etype of the current view

MPI_File_write_at(fh, offset, buf, count, datatype, status)

I/O
 –

W
R

IT
E

 /
 E

xp
lic

it
O

ffs
et

s

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 488

/ 644

MPI–IO Exercise 1: Four processes write a file in parallel

• each process should write its rank (as one character) ten times
to the offsets = my_rank + i * size_of_MPI_COMM_WORLD, i=0..9

• Result: “0123012301230123012301230123012301230123“
• Each process uses the default view

writing
1 1 1 1 1 1 ...

writing
2 2 2 2 2 2 ...

writing
3 3 3 3 3 3 ...

writing
0 0 0 0 0 0 ...

mpi processes of
a communicator

file

• please, use skeleton:
cp ~/MPI/tasks/C/Ch13/mpi_io_exa1_skel.c my_exa1.c
cp ~/MPI/tasks/F_30/Ch13/mpi_io_exa1_skel_30.f90 my_exa1_30.f90
cp ~/MPI/tasks/PY/Ch13/mpi_io_exa1_skel.py my_exa1.py

• edit; compile; rm -f my_test_file; mpirun … (always remove my_test_file before re-run)
• cat my_test_file; echo; wc -c my_test_file (verifying the result)

I/O
 –

Ex
er

ci
se

 1

C

Fortran

Python

Slide 489

/ 644

MPI–IO Advanced Exercise 1b: MPI_File_set_size

• rm -f my_test_file

• Run program of Exercise 1 with 4 processes:
Expected result “ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 “

• Do not remove my_test_file

and run again with only 2 processes:
Expected result “ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 “

• Please, make a copy of your result: cp my_exa1.c my_exa1b.c or _30.f90
• Set the file size to 0 (zero) directly after the MPI_File_open.

– Use MPI_File_set_size()
– For the interface, please look into the MPI standard.

• Compile and run again (without removing my_test_file),
now with 3 processes:
cat my_test_file ; echo ; wc -c my_test_file
Expected result: “ 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 “

writing
1 1 1 ...

writing
2 2 2 ...

writing
0 0 0 ...

I/O
 –

Ad
va

nc
ed

 E
xe

rc
is

e
1b

writing
1 1 1 ...

writing
0 0 0 ...

writing
1 1 1 ...

writing
2 2 2 ...

writing
3 3 3 ...

writing
0 0 0 ...

Corrections fro. 2022
–

Slide 491

/ 644

Outline – Block 2

• Block 1

– Introduction [323]
– Definitions [328]
– Open / Close [330]
– WRITE / Explicit Offsets [335]
– Exercise 1 [336]

• Block 2

– File Views [338]
– Subarray & Darray [342]
– I/O Routines Overview [350]
– READ / Explicit Offsets [352]
– Individual File Pointer [353]
– Exercise 2 [355]

• Block 3

– Shared File Pointer [358]
– Collective [360]
– Non-Blocking / Split Collective [364/365]
– Other Routines [368]
– Error Handling [369]
– Implementation Restrictions [370]
– Summary [371]
– Exercise 3 [372]
– Exercise 4 [373]

I/O
 –

O
ut

lin
e

 /

 B

lo
ck

 2

Slide 492

/ 644

File Views

• Provides a visible and accessible set of data from an open file
• A separate view of the file is seen by each process through triple :=

(displacement, etype, filetype)
• User can change a view during the execution of the program - but

collective operation
• A linear byte stream, represented by the triple

(0, MPI_BYTE, MPI_BYTE), is the default view

I/O
 –

Fi
le

 V
ie

w
s

Slide 493

/ 644

Set/Get File View

• Set view
– changes the process’s view of the data
– local and shared file pointers are reset to zero
– collective operation
– etype and filetype must be committed
– datarep argument is a string that specifies the format

in which data is written to a file:
“native”, “internal”, “external32”, or user-defined

– same etype extent and same datarep on all processes
• Get view

– returns the process’s view of the data

MPI_File_set_view(fh, disp, etype, filetype, datarep, info)
MPI_File_get_view(fh, disp, etype, filetype, datarep)

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 494

/ 644

Data Representation, I.

• “native”
– data stored in file identical to memory
– on homogeneous systems no loss in precision or I/O performance

due to type conversions
– on heterogeneous systems loss of interoperability
– no guarantee that MPI files accessible from C/Fortran

• “internal”
– data stored in implementation specific format
– can be used with homogeneous or heterogeneous environments
– implementation will perform type conversions if necessary
– no guarantee that MPI files accessible from C/Fortran

Slide 495

/ 644

Data Representation, II.

• “external32”
– follows standardized representation (IEEE)
– all input/output operations are converted from/to the

“external32” representation
– files can be exported/imported between different MPI

environments
– due to type conversions from (to) native to (from) “external32”

data precision and I/O performance may be lost
– “internal” may be implemented as equal to “external32”
– can be read/written also by non-MPI programs

• user-defined

No information about the default,
i.e., datarep without MPI_File_set_view() is not defined

Slide 496

/ 644

Fileview examples with SUBARRAY and DARRAY

• Task
– reading a global matrix from a file
– storing a subarray into a local array on each process
– according to a given distribution scheme

I/O
 –

Su
ba

rra
y

 &
 D

ar
ra

y

Slide 497

/ 644

Example with Subarray, I.

• 2-dimensional distribution scheme: (BLOCK,BLOCK)
• garray on the file 20x30:

– Contiguous indices is language dependent:
– in Fortran: (1,1), (2,1), (3,1), ... , (1,10), (2,20), (3,10), ..., (20,30)
– in C/C++: [0][0], [0][1], [0][2], ... , [10][0], [10][1], [10][2], ..., [19][29]

• larray = local array in each MPI process
= subarray of the global array

• same ordering on file (garray) and in memory (larray)

Slide 498

/ 644

Example with Subarray, II. — Distribution

• Process topology: 2x3
• global array on the file: 20x30
• distributed on local arrays in each process: 10x10

(1,1)

(20,30) *)

Fo
rtr

an

C / C++ (contiguous indices on the file and in the memory)

*) Figure: as in a math matrix, first index is vertical
(i.e., not horizontal as in a x,y-diagram) Slide 499

/ 644

Example with Subarray, III. — Reading the file

!!!! real garray(20,30) ! these HPF-like comment lines !
!!!! PROCESSORS procs(2, 3) ! explain the data distribution !
!!!! DISTRIBUTE garray(BLOCK,BLOCK) onto procs ! used in this MPI program !

real larray(10,10) ; integer (kind=MPI_OFFSET_KIND) disp,offset; disp=0; offset=0
ndims=2 ; psizes(1)=2 ; period(1)=.false. ; psizes(2)=3 ; period(2)=.false.
call MPI_CART_CREATE(MPI_COMM_WORLD, ndims, psizes, period,

.TRUE., comm, ierror)call MPI_COMM_RANK(comm, rank, ierror)
call MPI_CART_COORDS(comm, rank, ndims, coords, ierror)
gsizes(1)=20 ; lsizes(1)= 10 ; starts(1)=coords(1)*lsizes(1)
gsizes(2)=30 ; lsizes(2)= 10 ; starts(2)=coords(2)*lsizes(2)
call MPI_TYPE_CREATE_SUBARRAY(ndims, gsizes, lsizes, starts,

MPI_ORDER_FORTRAN, MPI_REAL, subarray_type, ierror)
call MPI_TYPE_COMMIT(subarray_type , ierror)
call MPI_FILE_OPEN(comm, 'exa_subarray_testfile', MPI_MODE_CREATE +

MPI_MODE_RDWR, MPI_INFO_NULL, fh, ierror)
call MPI_FILE_SET_VIEW (fh, disp, MPI_REAL, subarray_type, 'native',

MPI_INFO_NULL, ierror)
call MPI_FILE_READ_AT_ALL(fh, offset, larray, lsizes(1)*lsizes(2), MPI_REAL,

status, ierror)
Corrections

Slide 500

/ 644

Example with Subarray, IV.

• All MPI coordinates and indices start with 0,
even in Fortran, i.e. with MPI_ORDER_FORTRAN

• MPI indices (here starts) may differ () from Fortran indices
• Block distribution on 2*3 processes:

rank = 0
coords = (0, 0)
starts = (0, 0)
garray(1:10, 1:10)

= larray (1:10, 1:10)

rank = 1
coords = (0, 1)
starts = (0, 10)
garray(1:10, 11:20)

= larray (1:10, 1:10)

rank = 2
coords = (0, 2)
starts = (0, 20)
garray(1:10, 21:30)

= larray (1:10, 1:10)

rank = 3
coords = (1, 0)
starts = (10, 0)
garray(11:20, 1:10)

= larray (1:10, 1:10)

rank = 4
coords = (1, 1)
starts = (10, 10)
garray(11:20, 11:20)

= larray (1:10, 1:10)

rank = 5
coords = (1, 2)
starts = (10, 20)
garray(11:20, 21:30)

= larray (1:10, 1:10)

Slide 501

/ 644

Example with Darray, I.

• Distribution scheme: (CYCLIC(2), BLOCK)
• Cyclic distribution in first dimension with strips of length 2
• Block distribution in second dimension
• distribution of global garray onto the larray in each of the 2x3 processes
• garray on the file: • e.g., larray on process (0,1):
(1,1)

(20,30)

Slide 502

/ 644

Example with Darray, II.

!!!! real garray(20,30) ! these HPF-like comment lines !
!!!! PROCESSORS procs(2, 3) ! explain the data distribution !
!!!! DISTRIBUTE garray(CYCLIC(2),BLOCK) onto procs !used in this MPI program!

real larray(10,10); integer (kind=MPI_OFFSET_KIND) disp, offset; disp=0; offset=0
call MPI_COMM_SIZE(comm, size, ierror)
ndims=2 ; psizes(1)=2 ; period(1)=.false. ; psizes(2)=3 ; period(2)=.false.
call MPI_CART_CREATE(MPI_COMM_WORLD, ndims, psizes, period,

.TRUE., comm, ierror)call MPI_COMM_RANK(comm, rank, ierror)
call MPI_CART_COORDS(comm, rank, ndims, coords, ierror)
gsizes(1)=20 ; distribs(1)= MPI_DISTRIBUTE_CYCLIC; dargs(1)=2
gsizes(2)=30 ; distribs(2)= MPI_DISTRIBUTE_BLOCK; dargs(2)=

MPI_DISTRIBUTE_DFLT_DARG
call MPI_TYPE_CREATE_DARRAY(size, rank, ndims, gsizes, distribs, dargs,

psizes, MPI_ORDER_FORTRAN, MPI_REAL, darray_type, ierror)
call MPI_TYPE_COMMIT(darray_type , ierror)
call MPI_FILE_OPEN(comm, 'exa_subarray_testfile', MPI_MODE_CREATE +

MPI_MODE_RDWR, MPI_INFO_NULL, fh, ierror)
call MPI_FILE_SET_VIEW (fh, disp, MPI_REAL, darray_type, 'native',

MPI_INFO_NULL, ierror)
call MPI_FILE_READ_AT_ALL(fh, offset, larray, 10*10, MPI_REAL, istatus, ierror)

Slide 503

/ 644

Example with Darray, III.

• Cyclic distribution in first dimension with strips of length 2
• Block distribution in second dimension
• Processes’ tasks:

rank = 0
coords = (0, 0)

garray(, 1:10)

= larray (1:10, 1:10)

rank = 1
coords = (0, 1)

garray(, 11:20)

= larray (1:10, 1:10)

rank = 2
coords = (0, 2)

garray(, 21:30)

= larray (1:10, 1:10)

rank = 3
coords = (1, 0)

garray(, 1:10)

= larray (1:10, 1:10)

rank = 4
coords = (1, 1)

garray(, 11:20)

= larray (1:10, 1:10)

rank = 5
coords = (1, 2)

garray(, 21:30)

= larray (1:10, 1:10)

1: 2
5: 6
9:10

13:14
17:18

3: 4
7: 8

11:12
15:16
19:20

1: 2
5: 6
9:10

13:14
17:18

1: 2
5: 6
9:10

13:14
17:18

3: 4
7: 8

11:12
15:16
19:20

3: 4
7: 8

11:12
15:16
19:20

Slide 504

/ 644

5 Aspects of Data Access

• Direction: Read / Write
• Positioning [realized via routine names]

– explicit offset (_AT)
– individual file pointer (no positional qualifier)
– shared file pointer (_SHARED or _ORDERED)

(different names used depending on whether non-collective or
collective)

• Coordination
– non-collective
– collective (_ALL)

• Synchronism
– blocking
– nonblocking (I) and split collective (_BEGIN, _END)

• Atomicity, [realized with a separate API: MPI_File_set_atomicity]
– non-atomic (default)
– atomic: to achieve sequential consistency for conflicting accesses

on same fh in different processes

I/O
 –

R
ou

tin
es

 O
ve

rv
ie

w

Slide 505

/ 644

All Data Access Routines

Read e.g. MPI_FILE_READ_AT

positioning synchronism coordination

noncollective collective split collective

explicit blocking READ_AT READ_AT_ALL READ_AT_ALL_BEGIN

offsets WRITE_AT WRITE_AT_ALL READ_AT_ALL_END

nonblocking IREAD_AT IREAD_AT_ALL WRITE_AT_ALL_BEGIN

IWRITE_AT IWRITE_AT_ALL WRITE_AT_ALL_END

individual blocking READ READ_ALL READ_ALL_BEGIN

file pointers WRITE WRITE_ALL READ_ALL_END

nonblocking IREAD IREAD_ALL WRITE_ALL_BEGIN

IWRITE IWRITE_ALL WRITE_ALL_END

shared blocking READ_SHARED READ_ORDERED READ_ORDERED_BEGIN

file pointer WRITE_SHARED WRITE_ORDERED READ_ORDERED_END

nonblocking IREAD_SHARED N/A WRITE_ORDERED_BEGIN

IWRITE_SHARED WRITE_ORDERED_END

New in MPI-3.1New in MPI-3.1

Slide 506

/ 644

Explicit Offsets

• attempts to read count elements of datatype
• starting offset * units of etype

from begin of view (= displacement)
• the sequence of basic datatypes of datatype

(= signature of datatype)
must match
contiguous copies of the etype of the current view

• EOF can be detected by noting that the amount of data read is less
than count
– i.e. EOF is no error!
– use MPI_Get_count(status, datatype, recv_count)

e.g. MPI_File_read_at(fh, offset, buf, count, datatype, status)

I/O
 –

R
EA

D

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 507

/ 644

Individual File Pointer, I.

• same as “Explicit Offsets”, except:
• the offset is the current value of the

individual file pointer of the calling process

• the individual file pointer is updated by
new_fp = old_fp + elements(datatype) * count

i.e. it points to the next etype after the last one that will be accessed
(if EOF is reached, then recv_count is used, see previous slide)

e.g. MPI_File_read(fh, buf, count, datatype, status)

elements(etype)

I/O
 –

In
di

vi
du

al
 F

ile
 P

oi
nt

er

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 508

/ 644

Individual File Pointer, II.

• set individual file pointer fp:
– set fp to offset – if whence=MPI_SEEK_SET
– advance fp by offset – if whence=MPI_SEEK_CUR
– set fp to EOF+offset – if whence=MPI_SEEK_END

MPI_File_seek(fh, offset, whence)

MPI_File_get_position(fh, offset)
MPI_File_get_byte_offset(fh, offset, disp)

• to inquire offset
• to convert offset into byte displacement

[e.g. for disp argument in a new view]

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 509

/ 644

MPI–IO Exercise 2:

Using fileviews and individual filepointers

• Copy to your local directory:
cp ~/MPI/tasks/C/Ch13/mpi_io_exa2_skel.c my_exa2.c

cp ~/MPI/tasks/F_30/Ch13/mpi_io_exa2_skel_30.f90 my_exa2_30.f90

cp ~/MPI/tasks/PY/Ch13/mpi_io_exa2_skel.py my_exa2.py

• Tasks:
– Each MPI-process of my_exa2 should write one character to a file:

• process “rank=0” should write an ‘a’

• process “rank=1” should write an ‘b’

• ...

– Use a 1-dimensional fileview with MPI_TYPE_CREATE_SUBARRAY
– The pattern should be repeated 3 times, i.e., four processes should write:

“abcdabcdabcd”
– Please, substitute “____” in your my_exa2.c / _30.f90

• Edit; compile; rm -f my_test_file; mpirun… (always remove my_test_file before re-run)
• cat my_test_file; echo; wc -c my_test_file (verifying the result)

I/O
 –

Ex
er

ci
se

 2

C

Fortran

Python

Corrections fro. 2022
–

Slide 510

/ 644

MPI–IO Exercise 2:

Using fileviews and individual filepointers, continued

etype = MPI_CHARACTER / MPI_CHAR

filetype process 2

file displacement = 0 (number of header bytes), identical on all processes

filetype process 0
filetype process 1

file
tiling a file with filetypes:

view of process 2

view of process 0
view of process 1

filetype process 3
holes

a b c d a b c d a b c d

b b b
a a a

d d d
c c c

view of process 3

Otherwise optimization may be impossible

Slide 511

/ 644

MPI–IO Advanced Exercise 2b+c: Append

• rm -f my_test_file

• Run program of Exercise 1 with 4 processes:
cat my_test_file ; echo ; wc -c my_test_file
Expected result “ a b c d a b c d a b c d “ (12 characters)

2b) Please, make a copy of your result: cp my_exa2.c my_exa2b.c or _30.f90
• Set the displacement disp to the current filesize: Use MPI_File_get_size()

(For the interface, please look into the MPI standard)
• Compile and run again (without removing my_test_file), now with 2 processes:

Expected result: “ a b c d a b c d a b c d a b a b a b “ (18 characters)

2c) Please, make a copy of your original result: cp my_exa2.c my_exa2c.c or _30.f90
• Use MPI_File_seek() to move all individual file pointers to the end of the file

(For the interface, please look into the MPI standard)
• Again (without removing my_test_file), now with 3 processes

Expected result: “ a b c d a b c d a b c d a b a b a b a b c a b c a b c “ (27 characters)

• Caution:– Existing file size should be a multiple of the new filetype size
– Both OpenMPI and mpich may have a bug.

writing
b b b

writing
c c

writing
a a a

I/O
 –

Ad
va

nc
ed

 E
xe

rc
is

e
2b

+c

writing
b b b

writing
a a a

writing
b b b

writing
c c c

writing
d d d

writing
a a a

Corrections fro. 2022
–

Slide 513

/ 644

Outline – Block 3

• Block 1

– Introduction [323]
– Definitions [328]
– Open / Close [330]
– WRITE / Explicit Offsets [335]
– Exercise 1 [336]

• Block 2

– File Views [338]
– Subarray & Darray [342]
– I/O Routines Overview [350]
– READ / Explicit Offsets [352]
– Individual File Pointer [353]
– Exercise 2 [355]

• Block 3

– Shared File Pointer [358]
– Collective [360]
– Non-Blocking / Split Collective [364/365]
– Other Routines [368]
– Error Handling [369]
– Implementation Restrictions [370]
– Summary [371]
– Exercise 3 [372]
– Exercise 4 [373]

I/O
 –

O
ut

lin
e

 /

 B

lo
ck

 3

Slide 514

/ 644

Shared File Pointer, I.

• same view at all processes mandatory!
• the offset is the current, global value of the

shared file pointer of fh
• multiple calls [e.g. by different processes] behave as if the calls were serialized

• non-collective, e.g.

• collective calls are serialized in the order of the processes’ ranks, e.g.:

MPI_File_read_shared(fh, buf, count, datatype, status)

MPI_File_read_ordered(fh, buf, count, datatype, status)I/O
 –

Sh
ar

ed
 F

ile
 P

oi
nt

er

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 515

/ 644

Shared File Pointer, II.

• same rules as with individual file pointers

MPI_File_seek_shared(fh, offset, whence)
MPI_File_get_position_shared(fh, offset)
MPI_File_get_byte_offset(fh, offset, disp)

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 516

/ 644

Collective Data Access

• Explicit offsets / individual file pointer:
– same as non-collective calls by all processes “of fh”
– opportunity for best speed!!!

• shared file pointer:
– accesses are ordered by the ranks of the processes
– optimization opportunity:

• first, locations within the file for all processes can be computed

• then parallel physical data access by all processes

I/O
 –

C
ol

le
ct

iv
e

chance

chance

Slide 517

/ 644

Application Scenery, I.

• Scenery A:
– Task: Each process has to read the whole file
– Solution: MPI_File_read_all

= collective with individual file pointers,
with same view (displacement+etype+filetype)
on all processes
[internally: striped-reading by several process, only once

from disk, then distributing with bcast]
• Scenery B:

– Task: The file contains a list of tasks,
each task requires different compute time

– Solution: MPI_File_read_shared

= non-collective with a shared file pointer
(same view is necessary for shared file p.)

Slide 518

/ 644

Application Scenery, II.

• Scenery C:
– Task: The file contains a list of tasks,

each task requires the same compute time
– Solution: MPI_File_read_ordered

= collective with a shared file pointer
(same view is necessary for shared file p.)

– or: MPI_File_read_all

= collective with individual file pointers,
different views: filetype with
MPI_Type_create_subarray(1, nproc,
1, myrank, ..., datatype_of_task, filetype)

[internally: both may be implemented the same

and equally with following scenery D]

Slide 519

/ 644

Application Scenery, III.

• Scenery D:
– Task: The file contains a matrix,

block partitioning,
each process should get a block

– Solution: generate different filetypes with
MPI_Type_create_darray or …_subarray,
the view on each process represents the block
that should be read by this process,
MPI_File_read_at_all with offset=0
(= collective with explicit offsets)
reads the whole matrix collectively
[internally: striped-reading of contiguous blocks

by several process,

then distributed with “alltoall”]

Slide 520

/ 644

Nonblocking Data Access

• analogous to MPI-1 nonblocking

e.g. MPI_File_iread(fh, buf, count, datatype, request)
MPI_Wait(request, status)
MPI_Test(request, flag, status)

I/O
 –

N
on

-B
lo

ck
in

g
 /

 S
pl

it
C

ol
le

ct
iv

e

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 521

/ 644

Split Collective Data Access, I.

• collective operations may be split into two parts:
– start the split collective operation

– complete the operation and return the status

e.g. MPI_File_read_all_begin(fh, buf, count, datatype)

MPI_File_read_all_end(fh, buf, status)

May be deprecated in MPI-4.1

and removed in MPI-5

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 522

/ 644

Split Collective Data Access, II.

• Rules and Restrictions:
– the MPI_..._begin calls are collective
– the MPI_..._end calls are collective, too
– only one active (pending) split or regular collective operation per

file handle at any time
– split collective does not match ordinary collective
– same buf argument in MPI_..._begin and MPI_..._end call

• opportunity to overlap file I/O and computation
• but also a valid implementation:

– does all work within the MPI_..._begin routine,
passes status in the MPI_..._end routine

– passes arguments from MPI_..._begin to MPI_..._end,
does all work within the MPI_..._end routine

chance

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 523

/ 644

Scenery – Nonblocking or Split Collective

• Scenery A:
– Task: Each process has to read the whole file
– Solution: o MPI_File_iread_all or MPI_File_read_all_begin

= collective with individual file pointers,
with same view (displacement+etype+filetype)
on all processes
[internally:starting asynchronous striped-reading

by several process]
o then computing some other initialization,
o MPI_Wait or MPI_File_read_all_end.

[internally:waiting until striped-reading completed,

then distributing the data with bcast]

Slide 524

Corrections from 2023

/ 644

Other File Manipulation Routines

• Pre-allocating space for a file [collective call, may be expensive]
MPI_File_ preallocate(fh, size)

• Resizing a file [collective call, may speed up first writing on a file]
MPI_File_set_size(fh, size)

• Querying file size
MPI_File_get_size(filename, size)

• Querying file parameters
MPI_File_get_group(fh, group)
MPI_File_get_amode(fh, amode)

• File info object
MPI_File_set_info (fh, info) [collective call]
MPI_File_get_info(fh, info_used)

I/O
 –

O
th

er
 R

ou
tin

es

Returns a new info object that contains
the current setting of all hints used by
the system related to this open file:
• provided by the application, and
• provided by the system

MPI
MPI

Corrections from 2016

Corrections from 2016

size = 0  current file content is erased.
Recommended, if the whole file should be overwritten.

C/C++Fortran language bindings – see MPI Standard
and mpi4pyPython

Slide 525

/ 644

MPI I/O Error Handling

• File handles have their own error handler
• Default is MPI_ERRORS_RETURN,

i.e. non-fatal

[vs message passing: MPI_ERRORS_ARE_FATAL]

• Default is associated with MPI_FILE_NULL
[vs message passing: with MPI_COMM_WORLD]

• Changing the default, e.g., after MPI_Init:
MPI_File_set_errhandler(MPI_FILE_NULL, MPI_ERRORS_ARE_FATAL);
CALL MPI_FILE_SET_ERRHANDLER(MPI_FILE_NULL,MPI_ERRORS_ARE_FATAL,ierr)
MPI.FILE_NULL.Set_errhandler(MPI.ERRORS_ARE_FATAL)

• MPI is undefined after first erroneous MPI call
• but a high quality implementation

will support I/O error handling facilities

I/O
 –

Er
ro

r-H
an

dl
in

g

C/C++

Fortran

Python

Corrections fro. 2022
ierror

Slide 526

/ 644

Implementation-Restrictions

• ROMIO based MPI libraries:
– datarep = “internal” and “external32” is still not implemented
– User-defined data representations are not supported

I/O
 –

Im
pl

em
en

ta
tio

n-
R

es
tri

ct
io

ns

Slide 527

MPI-I/O: Summary

• Rich functionality provided to support various data representation and
access

• MPI I/O routines provide flexibility as well as portability
• Collective I/O routines can improve I/O performance
• ROMIO from Argonne was an initial implementation of MPI I/O
• Available (nearly) on every MPI implementation

• Parallel MPI I/O also used as basis for important I/O packages:
– Parallel HDF5

https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5
– Parallel NetCFD, e.g.,

https://en.wikipedia.org/wiki/NetCDF#Parallel-NetCDF

I/O
 –

Su
m

m
ar

y

Corrections

/ 644Slide 528

/ 644

MPI–IO Exercise 3: Collective ordered I/O

• Copy to your local directory:
cp ~/MPI/tasks/C/Ch13/mpi_io_exa3_skel.c my_exa3.c

cp ~/MPI/tasks/F_30/Ch13/mpi_io_exa3_skel_30.f90 my_exa3_30.f90

cp ~/MPI/tasks/PY/Ch13/mpi_io_exa3_skel.py my_exa3.py

• Tasks:
– Substitute the write call with individual filepointers

by a collective write call with shared filepointers
– Edit your my_exa3.c / _30.f90

• Compile; rm -f my_test_file; mpirun … (always remove my_test_file before re-run)
• cat my_test_file; echo; wc -c my_test_file (verifying the result)

I/O
 –

Ex
er

ci
se

 3

C

Fortran

Python

Corrections fro. 2022
–

Slide 529

/ 644

MPI–IO Exercise 4: I/O Benchmark

• Use:
MPI/tasks/F_30/Ch13/mpi_io_exa4_30.f90

(my apologies that there is only a Fortran version)

• Tasks:
– Compile and execute mpi_io_exa4 on 2, 4 and 8 MPI processes.
– Duplicate “WRITE_ALL & READ_ALL” block

and substitute by non-collective “WRITE & READ”.
– Compare collective and non-collective I/O.
– Double the value of gsize and compile and execute again.I/O

 –
Ex

er
ci

se
 4

Slide 531

