Lecture 14 Augmenting a Data Structure

Sultan ALPAR associate professor, IITU s.alpar@iitu.edu.kz

TOPICS

➢ **Augmentation**

➢ **Order Statistics Dictionary**

➢ **Interval Tree**

Augmenting a Data Structure

- Suppose we have a base data structure D that efficiently handles a standard set of operations. For instance, D is a Red-Black Tree that supports operations SEARCH, INSERT, and DELETE.
- **In some applications, besides the existing operations, we wish our data structure** to support an additional set of operations. For instance, the order-statistics operations SELECT and RANK (see next slides).
- How do we efficiently implement the new operations without degrading the efficiency of the existing ones?
- **This can be done by augmenting the data structure, i.e., maintaining added** pieces of information in it to assist fast implementation of the new operations.
- **EXED** However, this forces revision of the existing operations to consistently maintain the augmented info while they modify D.
- Given a new application, we need to figure out the following:
	- 1. What is the base data structure D we wish to use?
	- 2. What is the augmented information?
	- 3. How do we efficiently implement the new ops on the augmented D?
	- 4. How do we revise the existing operations on the augmented D, (ideally) without performance degradation?

ORDER STATISTICS DICTIONARY

Two new (inverse) operations:

RANK(K,D): return the number of items in data set D that are \leq key K. SELECT(r,D): return the item in D with rank r (return nil if none exists).

Solution 1: D as an un-ordered set of n items.

RANK and SELECT can be done in O(n) time in the worst-case. RANK(K,D): Sequentially scan through D and count # items \leq K. SELECT(r,D): See [CLRS chapter 9] or my CSE3101 LS5 or LN4.

Solution 2: D as a sorted array of n items.

RANK takes O(log n) time by binary-search. SELECT takes O(1) time by probing rank index position.

What about the dictionary operations? **Solution 3:** Augment a search tree. See next slides.

Augmenting a BST

Let T be any BST. What is rank of the root? $1 + #$ items in the left subtree.

Augmented info in each node x: $size[x] = # items in the subtree rooted at x.$

 $(size[nil] = 0.)$

Rank of root = $1 + size[left(root)].$

RANK & SELECT on BST

```
Rank(K,x) (* return rank of key K in BST rooted at x^*)
     if x = nil then return 0
     R \leftarrow 1 + size[left[x]] (* root rank *)
     if K = key[x] then return R
     if K < key[x] then return Rank(K,left[x])
     if K > \text{key}[x] then return R + \text{Rank}(K, \text{right}[x])end
```

```
Select(r,x) (* return item of rank r in BST rooted at x *)
    if x = nil then return nil
    R \leftarrow 1 + size[left[x]] (* root rank *)
    if r = R then return xif r < R then return Select(r,left[x])
    if r > R then return Select(r-R, right[x])
end
```


Running time = $O(\text{# nodes on the search path}).$

Maintain Augmented Info

"size[.]" field can be evaluated by a local recurrence in O(1) time.

```
size[x] = 1 + size[left[x]] + size[right[x]], if x \neq nilsize[nill] = 0.
```


With each dictionary operation (Search, Insert, Delete), update "size" field of affected nodes. What local changes affect the "size" field?

- **Example 1** Insert: attach a new leaf (increment size of all ancestors)
- **Delete:** splice-out a node (decrement size of all ancestors)
- Rotation:

Search, Insert, Delete: asymptotic running time unaffected!

Order Statistics Complexity

THEOREM 1:

Augmented Red-Black trees, with the added field size[x] at each node x, support the Order Statistics operations RANK & SELECT, as well as the dictionary operations SEARCH, INSERT, DELETE, in O(log n) worst-case time per operation.

If we use the same augmentation on Splay trees, each of these five operations takes O(log n) amortized time. [Note: we should "splay the deepest accessed node" after each operation, even after operations RANK & SELECT.]

DEFINITION: Suppose we augment each node x of a BST (or any variant) with a new field f[x]. We say "f" is " $O(1)$ locally composable" if for every node x in the tree, f[x] can be determined in O(1) time from the contents of nodes x, left[x], and right[x] (including their "f" fields).

[For instance "size", as defined above, is O(1) locally composable.]

AUGMENTATION THEOREM

THEOREM 2:

Suppose we augment Red-Black trees with a new $O(1)$ locally composable field f[x] at each node x. Then field "f" in every node of the tree can be consistently maintained by dictionary operations SEARCH, INSERT, DELETE, without affecting their O(log n) worst-case running time per operation.

If we use the same augmentation on Splay trees, each dictionary operation still takes O(log n) amortized time.

Proof: Generalize the "size" field augmentation idea. If x is the deepest affected accessed node, then bottom-up update f[y], for every ancestor y of x, inclusive. Also revise each rotation in $O(1)$ time to update the field f at its affected local nodes.

Intervals on the real line

Interval I on the real line = $[s[I], f[I]]$ (from start $s[I]$ to finish f[I], inclusive).

Interval Dictionary Problem

PROBLEM:

Maintain a set S of (possibly overlapping) intervals with the following operations:

SOLUTION:

Augment a Red-Black tree or a Splay tree. Each node x holds an interval $Int[x] = [s[x], f[x]]$ of S. For each node x: $key[x] \equiv s[x]$. So, intervals are inorder sorted by their starting point. What augmented fields should we maintain?

OverlapSearch(I**,x)**

Int[x]

Int[y]

 $Int[x]$

Case 2) I to the left of $Int[x]$: $f[I] < s[x]$. $\therefore \forall y \in R:$ f[I] $\lt s[x] \leq s[y]$ I is disjoint from x and from every interval in R. **return** OverlapSearch(I,left[x]) I

Case 3) I to the right of $Int[x]$: $f[x] <$ s[I]. Where to search next?

> $\therefore \forall y \in L: s[y] \leq s[x] < s[1].$: $\forall y \in L$: Int[y] overlap $I \Leftrightarrow f[y] \geq s[I]$.

(R may or may not have overlapping intervals.)

Define: $LAST(L) = max \{ f[y] | y \in L \}$. \therefore ($\exists y \in L$: Int[y] overlap I) \Leftrightarrow LAST(L) \geq s[I]. **if** LAST(L) \geq s[I] **then** OverlapSearch(I,left[x]) \leftrightarrow **else** OverlapSearch(I,right[x])

factor out

Interval Tree Example

