
Lecture 13
Red-Black Trees

Sultan ALPAR

associate professor, IITU

s.alpar@iitu.edu.kz

Red-black trees

• A variation of binary search trees.

• Balanced: height is O(lg n), where n is the
number of nodes.

• Operations will take O(lg n) time in the worst
case.

Red-black trees

• A red-black tree is a binary search tree + 1 bit per
node: an attribute color, which is either red or black.

• All leaves are empty (nil) and colored black.

• We use a single sentinel, T.nil, for all the leaves of red-
black tree T .

• T.nil.color is black.

• The root’s parent is also T.nil.

• All other attributes of binary search trees are inherited
by red-black trees (key, left,right, and p). We don’t care
about the key in T.nil.

Red-black properties

1. Every node is either red or black.

2. The root is black.

3. Every leaf (T.nil) is black.

4. If a node is red, then both its children are black.
(Hence no two reds in a row on a simple path
from the root to a leaf.)

5. For each node, all paths from the node to
descendant leaves contain the same number of
black nodes.

Example

Height of a red-black tree

• Height of a node is the number of edges in a
longest path to a leaf.

• Black-height of a node x: bh(x) is the number
of black nodes (including T.nil) on the path
from x to leaf, not counting x. By property 5,
black-height is well defined.

Height of a red-black tree

• Claim

Any node with height h has black-height ≥ h/2.

• Proof By property 4, ≤ h/2 nodes on the path
from the node to a leaf are red.

Hence ≥ h/2 are black.

Height of a red-black tree

• Claim
The subtree rooted at any node x contains ≥ 2bh(x) - 1 internal
nodes.

• Proof By induction on height of x.
• Basis: Height of x = 0 ⇒ x is a leaf ⇒ bh(x) = 0. The subtree

rooted at x has 0 internal nodes. 20 - 1 = 0.
• Inductive step: Let the height of x be h and bh(x) = b. Any

child of x has height h - 1 and black-height either b (if the
child is red) or b -1 (if the child is black). By the inductive
hypothesis, each child has ≥ 2bh(x) - 1 - 1 internal nodes.
Thus, the subtree rooted at x contains ≥ 2 ∙ (2bh(x) - 1 - 1) + 1
internal nodes. (The +1 is for x itself.)

Height of a red-black tree

• Lemma

• A red-black tree with n internal nodes has
height ≤ 2 lg(n + 1).

• Proof Let h and b be the height and black-
height of the root, respectively. By the above
two claims, n ≥ 2b - 1 ≥ 2h/2 – 1.

• Adding 1 to both sides and then taking logs
gives lg(n + 1) ≥ h/2, which implies that
h ≤ 2 lg(n +1).

Operations on red-black trees

• The non-modifying binary-search-tree operations
MINIMUM, MAXIMUM, SUCCESSOR,
PREDECESSOR, and SEARCH run in O(height) time.
Thus, they take O(lg n) time on red-black trees.

• Insertion and deletion are not so easy.

• If we insert, what color to make the new node?

– Red? Might violate property 4.

– Black? Might violate property 5.

Rotations

• The basic tree-restructuring operation.
• Needed to maintain red-black trees as balanced

binary search trees.
• Changes the local pointer structure. (Only

pointers are changed.)
• Won’t upset the binary-search-tree property.
• Have both left rotation and right rotation. They

are inverses of each other.
• A rotation takes a red-black-tree and a node

within the tree

Rotations

Rotations

• The pseudocode for LEFT-ROTATE assumes
that

– x.right ≠ T.nil, and

– root’s parent is T.nil.

• Pseudocode for RIGHT-ROTATE is symmetric:
exchange left and right everywhere.

Example

Insertion

• RB-INSERT ends by coloring the new node z red.
– Then it calls RB-INSERT-FIXUP because we could have

violated a red-black property.

• Which property might be violated?

1. OK.

2. If z is the root, then there’s a violation. Otherwise, OK.

3. OK.

4. If z.p is red, there’s a violation: both z and z.p are red.

5. OK.

Insertion

• Loop invariant:

• At the start of each iteration of the while
loop,

a. z is red.

b. There is at most one red-black violation:

– Property 2: z is a red root, or

– Property 4: z and z.p are both red.

Insertion

• Initialization: We’ve already seen why the loop
invariant holds initially.

• Termination: The loop terminates because z.p is black.
Hence, property 4 is OK. Only property 2 might be
violated, and the last line fixes it.

• Maintenance: We drop out when z is the root (since
then z.p is the sentinel T.nil, which is black). When we
start the loop body, the only violation is of property 4.

• There are 6 cases, 3 of which are symmetric to the
other 3. The cases are not mutually exclusive. We’ll
consider cases in which z.p is a left child.

• Let y be z’s uncle (z.p’s sibling).

Loop invariant

Loop invariant

Loop invariant

Analysis

Idea

• Move the extra black up the tree until
– x points to a red & black node ⇒ turn it into a black node,
– x points to the root ⇒ just remove the extra black, or
– we can do certain rotations and recolorings and finish.

• Within the while loop:
– x always points to a nonroot doubly black node.
– w is x’s sibling.
– w cannot be T.nil, since that would violate property 5 at

x.p.

• There are 8 cases, 4 of which are symmetric to the
other 4. As with insertion, the cases are not mutually
exclusive. We’ll look at cases in which x is a left child.

Case 1

Case 2

Case 3

Case 4

Analysis

• O(lg n) time to get through RB-DELETE up to the
call of RB-DELETE-FIXUP.

• Within RB-DELETE-FIXUP:

– Case 2 is the only case in which more iterations occur.

– x moves up 1 level.

– Hence, O(lg n) iterations.

– Each of cases 1, 3, and 4 has 1 rotation ⇒ ≤ 3 rotations
in all.

– Hence, O(lg n) time.

	Slide 1: Lecture 13 Red-Black Trees
	Slide 2: Red-black trees
	Slide 3: Red-black trees
	Slide 4: Red-black properties
	Slide 5: Example
	Slide 6: Height of a red-black tree
	Slide 7: Height of a red-black tree
	Slide 8: Height of a red-black tree
	Slide 9: Height of a red-black tree
	Slide 10: Operations on red-black trees
	Slide 11: Rotations
	Slide 12: Rotations
	Slide 13: Rotations
	Slide 14: Example
	Slide 15: Insertion
	Slide 16: Insertion
	Slide 17: Insertion
	Slide 18: Loop invariant
	Slide 19: Loop invariant
	Slide 20: Loop invariant
	Slide 21: Analysis
	Slide 22: Idea
	Slide 23: Case 1
	Slide 24: Case 2
	Slide 25: Case 3
	Slide 26: Case 4
	Slide 27: Analysis

