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Red-black trees

• A variation of binary search trees.

• Balanced: height is O(lg n), where n is the 
number of nodes.

• Operations will take O(lg n) time in the worst 
case.



Red-black trees

• A red-black tree is a binary search tree + 1 bit per 
node: an attribute color, which is either red or black.

• All leaves are empty (nil) and colored black.

• We use a single sentinel, T.nil, for all the leaves of red-
black tree T .

• T.nil.color is black.

• The root’s parent is also T.nil.

• All other attributes of binary search trees are inherited 
by red-black trees (key, left,right, and p). We don’t care 
about the key in T.nil.



Red-black properties

1. Every node is either red or black.

2. The root is black.

3. Every leaf (T.nil) is black.

4. If a node is red, then both its children are black. 
(Hence no two reds in a row on a simple path 
from the root to a leaf.)

5. For each node, all paths from the node to 
descendant leaves contain the same number of 
black nodes.



Example



Height of a red-black tree

• Height of a node is the number of edges in a 
longest path to a leaf.

• Black-height of a node x: bh(x) is the number 
of black nodes (including T.nil) on the path 
from x to leaf, not counting x. By property 5, 
black-height is well defined.



Height of a red-black tree

• Claim

Any node with height h has black-height ≥ h/2.

• Proof By property 4, ≤ h/2 nodes on the path 
from the node to a leaf are red.

Hence ≥ h/2 are black.



Height of a red-black tree

• Claim
The subtree rooted at any node x contains ≥ 2bh(x) - 1 internal 
nodes.

• Proof By induction on height of x.
• Basis: Height of x = 0 ⇒ x is a leaf ⇒ bh(x) = 0. The subtree

rooted at x has 0 internal nodes. 20 - 1 = 0.
• Inductive step: Let the height of x be h and bh(x) = b. Any 

child of x has height h - 1 and black-height either b (if the 
child is red) or b -1 (if the child is black). By the inductive 
hypothesis, each child has ≥ 2bh(x) - 1 - 1 internal nodes.
Thus, the subtree rooted at x contains ≥ 2 ∙ (2bh(x) - 1 - 1) + 1 
internal nodes. (The +1 is for x itself.)



Height of a red-black tree

• Lemma

• A red-black tree with n internal nodes has 
height ≤ 2 lg(n + 1).

• Proof Let h and b be the height and black-
height of the root, respectively. By the above 
two claims, n ≥ 2b - 1 ≥ 2h/2 – 1.

• Adding 1 to both sides and then taking logs 
gives lg(n + 1) ≥ h/2, which implies that             
h ≤  2 lg(n +1).



Operations on red-black trees

• The non-modifying binary-search-tree operations 
MINIMUM, MAXIMUM, SUCCESSOR, 
PREDECESSOR, and SEARCH run in O(height) time. 
Thus, they take O(lg n) time on red-black trees.

• Insertion and deletion are not so easy.

• If we insert, what color to make the new node?

– Red? Might violate property 4.

– Black? Might violate property 5.



Rotations

• The basic tree-restructuring operation.
• Needed to maintain red-black trees as balanced 

binary search trees.
• Changes the local pointer structure. (Only 

pointers are changed.)
• Won’t upset the binary-search-tree property.
• Have both left rotation and right rotation. They 

are inverses of each other.
• A rotation takes a red-black-tree and a node 

within the tree



Rotations



Rotations

• The pseudocode for LEFT-ROTATE assumes 
that

– x.right ≠ T.nil, and

– root’s parent is T.nil.

• Pseudocode for RIGHT-ROTATE is symmetric: 
exchange left and right everywhere.



Example



Insertion

• RB-INSERT ends by coloring the new node z red.
– Then it calls RB-INSERT-FIXUP because we could have 

violated a red-black property.

• Which property might be violated?

1. OK.

2. If z is the root, then there’s a violation. Otherwise, OK.

3. OK.

4. If z.p is red, there’s a violation: both z and z.p are red.

5. OK.



Insertion

• Loop invariant:

• At the start of each iteration of the while 
loop,

a. z is red.

b. There is at most one red-black violation:

– Property 2: z is a red root, or

– Property 4: z and z.p are both red.



Insertion

• Initialization: We’ve already seen why the loop 
invariant holds initially.

• Termination: The loop terminates because z.p is black. 
Hence, property 4 is OK. Only property 2 might be 
violated, and the last line fixes it.

• Maintenance: We drop out when z is the root (since 
then z.p is the sentinel T.nil, which is black). When we 
start the loop body, the only violation is of property 4.

• There are 6 cases, 3 of which are symmetric to the 
other 3. The cases are not mutually exclusive. We’ll 
consider cases in which z.p is a left child.

• Let y be z’s uncle (z.p’s sibling).



Loop invariant



Loop invariant



Loop invariant



Analysis



Idea

• Move the extra black up the tree until
– x points to a red & black node ⇒ turn it into a black node,
– x points to the root ⇒ just remove the extra black, or
– we can do certain rotations and recolorings and finish.

• Within the while loop:
– x always points to a nonroot doubly black node.
– w is x’s sibling.
– w cannot be T.nil, since that would violate property 5 at 

x.p.

• There are 8 cases, 4 of which are symmetric to the 
other 4. As with insertion, the cases are not mutually 
exclusive. We’ll look at cases in which x is a left child.



Case 1



Case 2



Case 3



Case 4



Analysis

• O(lg n) time to get through RB-DELETE up to the 
call of RB-DELETE-FIXUP.

• Within RB-DELETE-FIXUP:

– Case 2 is the only case in which more iterations occur.

– x moves up 1 level.

– Hence, O(lg n) iterations.

– Each of cases 1, 3, and 4 has 1 rotation ⇒ ≤ 3 rotations 
in all.

– Hence, O(lg n) time.
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