Lecture 13
Red-Black Trees

Sultan ALPAR
associate professor, IITU
s.alpar@iitu.edu.kz



Red-black trees

* A variation of binary search trees.

* Balanced: height is O(lg n), where n is the
number of nodes.

e Operations will take O(lg n) time in the worst
case.



Red-black trees

A red-black tree is a binary search tree + 1 bit per
node: an attribute color, which is either red or black.

All leaves are empty (nil) and colored black.

We use a single sentinel, T.nil, for all the leaves of red-
black tree T.

TI.nil.color is black.
The root’s parent is also T.nil.

All other attributes of binary search trees are inherited
by red-black trees (key, left,right, and p). We don’t care
about the key in T.nil.



B W N

Red-black properties

Every node is either red or black.
The root is black.
Every leaf (T.nil) is black.

If a node is red, then both its children are black.
(Hence no two reds in a row on a simple path
from the root to a leaf.)

For each node, all paths from the node to
descendant leaves contain the same number of
black nodes.



Example

T .nil



Height of a red-black tree

* Height of a node is the number of edges in a
longest path to a leaf.

* Black-height of a node x: bh(x) is the number
of black nodes (including T.nil) on the path
from x to leaf, not counting x. By property 5,
black-height is well defined.



Height of a red-black tree

* Claim
Any node with height h has black-height > h/2.

* Proof By property 4, < h/2 nodes on the path
from the node to a leaf are red.

Hence > h/2 are black.



Height of a red-black tree

Claim

The subtree rooted at any node x contains > 2bh*)-1internal
nodes.

Proof By induction on height of x.

Basis: Height of x =0 = x is a leaf = bh(x) = 0. The subtree
rooted at x has O internal nodes. 2°-1 =0.

Inductive step: Let the height of x be h and bh(x) = b. Any
child of x has height h - 1 and black-height either b (if the
child is red) or b -1 (if the child is black). By the inductive

hypothesis, each child has > 2bhx)-1 - 1 internal nodes.

Thus, the subtree rooted at x contains =2 - (2°h0)-1 - 1) +1
internal nodes. (The +1 is for x itself.)



Height of a red-black tree

Lemma
A red-black tree with n internal nodes has
height < 2 Ig(n + 1).

Proof Let h and b be the height and black-
height of the root, respectively. By the above
two claims, n>2b-1>2h2_ 1

Adding 1 to both sides and then taking logs
gives Ig(n + 1) = h/2, which implies that
h< 2lg(n+1).



Operations on red-black trees

* The non-modifying binary-search-tree operations
MINIMUM, MAXIMUM, SUCCESSOR,

PREDECESSOR, and SEARCH run in O(height) time.
Thus, they take O(lg n) time on red-black trees.

* Insertion and deletion are not so easy.

* |f weinsert, what color to make the new node?
— Red? Might violate property 4.
— Black? Might violate property 5.



Rotations

The basic tree-restructuring operation.

Needed to maintain red-black trees as balanced
binary search trees.

Changes the local pointer structure. (Only
pointers are changed.)

Won’t upset the binary-search-tree property.

Have both left rotation and right rotation. They
are inverses of each other.

A rotation takes a red-black-tree and a node
within the tree



Rotations

LEFT-ROTATE(T . x)
o | [T T LT e e P TP RTTTRTT EITT °

R_IGHT—RDTATE(T,. v)

a B B Y

LEFT-ROTATE(7, x)

y = x.right // set y

x.right = y.left // turn y’s left subtree into x’s right subtree

if y.left # T.nil
y.leftp = x
y.p = X.p // link x’s parent to y
if x.p == T.nil
T.root =y
elseif x == x.p.left
x.p.left =y
else x.p.right = y
y.left = x // put x on y’s left
X.p=Yy



Rotations

* The pseudocode for LEFT-ROTATE assumes
that

— x.right # T.nil, and
— root’s parent is T.nil.

e Pseudocode for RIGHT-ROTATE is symmetric:
exchange left and right everywhere.



Example

* Before rotation: keys of x’s left subtree < 11 < keys of y’s left subtree < 18 <
keys of y’s right subtree.

* Rotation makes y’s left subtree into x s right subtree.

* After rotation: keys of x’s left subtree < 11 < keys of x s right subtree < 18 <
keys of y’s right subtree.

Time
O(1) for both LEFT-ROTATE and RIGHT-ROTATE, since a constant number of
pointers are modified.



Insertion

* RB-INSERT ends by coloring the new node z red.

— Then it calls RB-INSERT-FIXUP because we could have
violated a red-black property.

* Which property might be violated?

OK.

If z is the root, then there’s a violation. Otherwise, OK.
OK.

If z.p is red, there’s a violation: both z and z.p are red.
OK.

Al S N



Insertion

* Loop invariant:

e At the start of each iteration of the while
loop,

a. Zzisred.

b. There is at most one red-black violation:
— Property 2: zis a red root, or
— Property 4: z and z.p are both red.



Insertion

Initialization: We’ve already seen why the loop
invariant holds initially.

Termination: The loop terminates because z.p is black.
Hence, property 4 is OK. Only property 2 might be
violated, and the last line fixes it.

Maintenance: We drop out when z is the root (since
then z.p is the sentinel T.nil, which is black). When we
start the loop body, the only violation is of property 4.

There are 6 cases, 3 of which are symmetric to the
other 3. The cases are not mutually exclusive. We'll
consider cases in which z.p is a left child.

Let y be Z’s uncle (z.p’s sibling).



Loop invariant

Case 1: y 1sred

If z is a right child

o p If z 1s a left child

* Z.p.p (Z’s grandparent) must be black, since z and Z.p are both red and
there are no other violations of property 4.

* Make z.p and y black = now Z and Z. p are not both red. But property 5
might now be violated.

* Make z.p.p red = restores property 5.

* The next iteration has Z.p.p as the new 7 (1.e., Z moves up 2 levels).



Loop invariant

Case 2: y 1s black, 7 1s a right child

Case 2 Case 3

* Left rotate around zZ.p = now Z 1s a left child, and both z and z.p are
red.

* Takes us immediately to case 3.



Loop invariant

Case 3: y 1s black, z 1s a left chald

* Make z.p black and Z.p.p red.
* Then right rotate on Z.p.p.
* No longer have 2 reds in a row.

* Z.p1s now black = no more iterations.

Analysis

O(lgn) time to get through RB-INSERT up to the call of RB-INSERT-FIXUP.



Analysis

Within RB-INSERT-FIXUP:

* Each iteration takes O(1) time.
* Each iteration 1s either the last one or 1t moves Z up 2 levels.
* O(lgn) levels = O(lgn) time.

* Also note that there are at most 2 rotations overall.

Thus, mnsertion 1nto a red-black tree takes O(lg n) time.



ldea

Move the extra black up the tree until

— x points to a red & black node = turn it into a black node,
— x points to the root = just remove the extra black, or

— we can do certain rotations and recolorings and finish.

Within the while loop:
— x always points to a nonroot doubly black node.
— wis x’s sibling.
— w cannot be T.nil, since that would violate property 5 at
X.p.
There are 8 cases, 4 of which are symmetric to the

other 4. As with insertion, the cases are not mutually
exclusive. We’ll look at cases in which x is a left child.



w must have black children.

Make w black and x.p red.

Then left rotate on x.p.

New sibling of x was a child of w before rotation = must be black.

Go immediately to case 2, 3, or 4.



Case 2

Case 2: w 1s black and both of w’s children are black

B © s HID naw x B o

¥y o £ C % 0 £ C
[Node with gray outline is of unknown color, denoted by c.]

* Take 1 black off x (= singly black) and off w (= red).
* Move that black to x.p.
* Do the next iteration with x.p as the new x.

* If entered this case from case 1, then x.p was red = new x i1s red & black
=> color attribute of new x 1s RED = loop terminates. Then new x 1s made

black in the last line.



Case 3

Case 3: w 1s black, w’s left child 1s red, and w’s right child 1s black

* Make w red and w’s left child black.

* Then right rotate on w.
* New sibling w of x 1s black with a red right child = case 4.



Case 4

Case 4: w 1s black, w’s left child 1s black, and w’s right child 1s red

}, £ Ef new x = I .root

[Now there are two nodes of unknown colors, denoted by ¢ and ¢'.]

* Make w be x.p’s color ().

* Make x.p black and w’s right child black.

* Then left rotate on x.p.

* Remove the extra black on x (= x 1s now singly black) without violating
any red-black properties.

* All done. Setting x to root causes the loop to terminate.



Analysis

* O(lg n) time to get through RB-DELETE up to the
call of RB-DELETE-FIXUP.

* Within RB-DELETE-FIXUP:

— Case 2 is the only case in which more iterations occur.
— x moves up 1 level.
— Hence, O(lg n) iterations.

— Each of cases 1, 3, and 4 has 1 rotation = < 3 rotations
in all.

— Hence, O(lg n) time.



	Slide 1: Lecture 13 Red-Black Trees
	Slide 2: Red-black trees
	Slide 3: Red-black trees
	Slide 4: Red-black properties
	Slide 5: Example
	Slide 6: Height of a red-black tree
	Slide 7: Height of a red-black tree
	Slide 8: Height of a red-black tree
	Slide 9: Height of a red-black tree
	Slide 10: Operations on red-black trees
	Slide 11: Rotations
	Slide 12: Rotations
	Slide 13: Rotations
	Slide 14: Example
	Slide 15: Insertion
	Slide 16: Insertion
	Slide 17: Insertion
	Slide 18: Loop invariant
	Slide 19: Loop invariant
	Slide 20: Loop invariant
	Slide 21: Analysis
	Slide 22: Idea
	Slide 23: Case 1
	Slide 24: Case 2
	Slide 25: Case 3
	Slide 26: Case 4
	Slide 27: Analysis

