
Lecture 12
Binary search trees

Sultan ALPAR

associate professor, IITU

s.alpar@iitu.edu.kz

1

Outline

1) Binary Search Trees

2) Searching BSTs

3) Adding to BSTs

4) Removing from BSTs

5) BST Analysis

6) Balancing BSTs

2

Binary Search Tree

• Binary search trees (BSTs) are
binary trees with a special property

• For each node
• All descendants in its left subtree have

a lower value

• All descendants in its right subtree
have a higher value

• An in-order traversal will output the
nodes in increasing order, hence
the name “in-order”

3

F

B H

G IA D

C E

Searching a BST

•How do we implement contains() using a BST?

• Suppose we’re looking for 11 in the tree below

• Starting at the root, each comparison tells us which
subtree to look in

4

13

7 20

15 245 10

8 11

11 < 13

11 > 7

11 > 10

found it!

Searching a BST (2)

•What if an element isn’t in the tree?

•Suppose we are looking for 14 in the same tree

5

14 > 13

14 < 20

we’ve hit a leaf without
finding 14, so it’s not in
the tree

13

7 20

15 245 10

8 11

BST contains()

6

function contains(node, toFind):
// Input: node - root node of tree
// toFind - data of the node you’re trying to find
// Output: the node with data toFind or null if toFind is not
// in BST

if node.data == toFind:
return node

else if toFind < node.data and node.left != null:
return contains(node.left, toFind)

else if toFind > node.data and node.right != null:
return contains(node.right, toFind)

return null

Inserting into a BST

• To add an item to a BST, perform the same search to find
where it should go

•An item is always added as a new leaf node

• Example: add 17

7

17 > 13

17 < 20

17 > 15

17

13

7 20

15 245 10

8 11

BST insert()

8

function insert(node, toInsert):
// Input: node - root node of tree
// toInsert - data you are trying to insert

if node.data == toInsert: // data already in tree
return

if toInsert < node.data:
if node.left == null:

node.addLeft(toInsert)
else:

insert(node.left, toInsert)
else:

if node.right == null:
node.addRight(toInsert)

else:
insert(node.right, toInsert)

Removing from a BST

• Removing an item from a BST is tricky
(sometimes).

• We have three cases to consider:
• 1) Removing a leaf (easy, just remove it)

• 2) Removing an internal node with one
child

• 3) Removing an internal node with two
children

9

13

7 20

15 245 10

8 11 17

Removing from a BST – Case 2

• Case 2: Removing an internal node
with one child

• General strategy:
• “splice” out the node to remove by

connecting the node’s parent to the
node’s child.

• Example: remove(15)

10

13

7 20

15 245 10

8 11 17

Removing from a BST – Case 2

• Case 2: Removing an internal node
with one child

• General strategy:
• “splice” out the node to remove by

connecting the node’s parent to the
node’s child.

• Example: remove(15)
• We set the parent node’s left reference

to the given node’s only child

11

13

7 20

15 245 10

8 11 17

Removing from a BST – Case 2

• Case 2: Removing an internal node
with one child

• General strategy:
• “splice” out the node to remove by

connecting the node’s parent to the
node’s child.

• Example: remove(15)
• We set the parent node’s left reference

to the given node’s only child

• There are no more references to the given
node, so it is deleted (garbage collected)

12

13

7 20

15 245 10

8 11 17

Removing from a BST – Case 2

• Case 2: Removing an internal node
with one child

• General strategy:
• “splice” out the node to remove by

connecting the node’s parent to the
node’s child.

• Example: remove(15)
• We set the parent node’s left reference

to the given node’s only child

• There are no more references to the given
node, so it is deleted (garbage collected)

• BST order is maintained

13

13

7 20

17 245 10

8 11

Removing from a BST – Case 3

• Case 3: Removing an internal node
with two children

• General strategy:
• Replace the data of the node to remove

with the data of the node’s successor.

• Delete the successor.

• The successor is also called the in-
order successor, because it comes
next in the in-order tree traversal.

14

13

7 20

17 245 10

8 11

9

(first, to help with our example, we made a small addition to this tree)

Removing from a BST – Case 3

• Case 3: Removing an internal node
with two children

• Example: remove(7)
• First, let’s find the in-order successor to

the given node.

• Since we know the given node has two
children – which guarantees the node has
a right subtree – we know that its
successor will always be the left-most
node in its right subtree.

15

13

7 20

17 245 10

8 11

13

7 20

17 245 10

8 11

9

in-order successor to 7

Removing from a BST – Case 3

• Case 3: Removing an internal node
with two children

• Example: remove(7)
• Code to find the in-order successor:

successor(node):

// Input: node – the node for

// which to find the successor

curr = node.right

while (curr.left != null):

curr = curr.left

return curr

16

13

7 20

17 245 10

8 11

13

7 20

17 245 10

8 11

9

in-order successor to 7

Removing from a BST – Case 3

• Case 3: Removing an internal node
with two children

• Example: remove(7)
• Second, let’s replace the data of the node

to remove with that of its successor.

17

13

7 20

17 245 10

8 11

13

8 20

17 245 10

8 11

9

Removing from a BST – Case 3

• Case 3: Removing an internal node
with two children

• Example: remove(7)
• Lastly, remove the successor.

• Notice that we can make one very
important guarantee: the successor
cannot have a left child, otherwise that
child would have been the in-order
successor to 7. Thus, the successor can
have at most one (right) child.

• Therefore, we can delete the successor
according to the strategies we defined for
Cases 1 and 2.

18

13

7 20

17 245 10

8 11

13

8 20

17 245 10

8 11

9

Removing from a BST – Case 3

• Case 3: Removing an internal node
with two children

• Example: remove(7)
• In this case, we remove the successor

according to Case 2: internal node with
one child.

19

13

7 20

17 245 10

8 11

13

8 20

17 245 10

8 11

9

Removing from a BST – Case 3

• Case 3: Removing an internal node
with two children

• Example: remove(7)
• Successor is removed.

• BST order is maintained.

20

13

7 20

17 245 10

8 11

13

8 20

17 245 10

9 11

BST remove()

21

function remove(node):
// Input: node – the node we are trying to remove. We can find this node
// by calling contains()

if node has no children: // case 1 – node is a leaf
node.parent.removeChild(node)

else if node only has left child: // case 2a – only left child
if node.parent.left == node: // if node is a left child

node.parent.left = node.left
else:

node.parent.right = node.left
else if node only has right child: // case 2b – only right child

if node.parent.left == node:
node.parent.left = node.right

else:
node.parent.right = node.right

else: // case 3 – node has two children
nextNode = successor(node)
node.data = nextNode.data // replace node’s data with that of nextNode
remove(nextNode) // nextNode guaranteed to have at most one child

Successor vs. Predecessor

• It should be noted that it is perfectly valid to use a node’s in-
order predecessor in place of its successor in our BST remove()
algorithm.

• It doesn’t matter if you use one over the other, but randomly
picking between the two helps keep the tree more balanced

• In case 3, the predecessor would be the right-most node of the
given node’s left subtree.

22

BST Analysis

• How fast are the BST functions?

• Depends on the height of the tree! The
worst case requires traversing all the way to
the leaf with the greatest depth

• If the tree is perfectly balanced, then its
height is about log2n, which would let the
BST functions run in O(log n) time

• But in the extremely unbalanced case, a
binary search tree just becomes a sorted
linked list, and its functions run in O(n) time

23

B

A

D

C

E

Balancing a BST

• If a binary tree becomes unbalanced, we can fix it
by performing a series of tree rotations

24

A

B C

A

B

C

A

B

C

AB C

Observe that the in-order ordering of each of these trees remains

which means that the BST order is preserved between rotations

	Slide 1: Lecture 12 Binary search trees
	Slide 2: Outline
	Slide 3: Binary Search Tree
	Slide 4: Searching a BST
	Slide 5: Searching a BST (2)
	Slide 6: BST contains()
	Slide 7: Inserting into a BST
	Slide 8: BST insert()
	Slide 9: Removing from a BST
	Slide 10: Removing from a BST – Case 2
	Slide 11: Removing from a BST – Case 2
	Slide 12: Removing from a BST – Case 2
	Slide 13: Removing from a BST – Case 2
	Slide 14: Removing from a BST – Case 3
	Slide 15: Removing from a BST – Case 3
	Slide 16: Removing from a BST – Case 3
	Slide 17: Removing from a BST – Case 3
	Slide 18: Removing from a BST – Case 3
	Slide 19: Removing from a BST – Case 3
	Slide 20: Removing from a BST – Case 3
	Slide 21: BST remove()
	Slide 22: Successor vs. Predecessor
	Slide 23: BST Analysis
	Slide 24: Balancing a BST

