
Lecture 11 Hash Tables

Sultan ALPAR

associate professor, IITU

s.alpar@iitu.edu.kz

2

The Search Problem

• Unsorted list
– O(N)

• Sorted list
– O(logN) using arrays (i.e., binary search)

– O(N) using linked lists

• Binary Search tree
– O(logN) (i.e., balanced tree)

– O(N) (i.e., unbalanced tree)

• Can we do better than this?
– Direct Addressing

– Hashing

3

Direct Addressing

• Assumptions:

– Key values are distinct

– Each key is drawn from a universe U = {0, 1, . . . , n - 1}

• Idea:

– Store the items in an array, indexed by keys

4

Direct Addressing (cont’d)

• Direct-address table

representation:

– An array T[0 . . . n - 1]

– Each slot, or position, in T

corresponds to a key in U

– For an element x with key k, a

pointer to x will be placed in

location T[k]

– If there are no elements with

key k in the set, T[k] is empty,

represented by NIL

Search, insert, delete in O(1) time!

5

Direct Addressing (cont’d)

Example 1: Suppose that the are integers from 1 to 100 and

that there are about 100 records.

Create an array A of 100 items and stored the record whose key

is equal to i in in A[i].

|K| = |U|

|K|: # elements in K

|U|: # elements in U

6

Direct Addressing (cont’d)

Example 2: Suppose that the keys are 9-digit social security

numbers (SSN)

Although we could use the same idea, it would be very inefficient

(i.e., use an array of 1 billion size to store 100 records)

|K| << |U|

7

Hashing

Idea:

– Use a function h to compute the slot for each key

– Store the element in slot h(k)

• A hash function h transforms a key into an

index in a hash table T[0…m-1]:

 h : U → {0, 1, . . . , m - 1}

• We say that k hashes to slot h(k)

8

Hashing (cont’d)

U

(universe of keys)

K

(actual

keys)

0

m - 1

h(k3)

h(k2) = h(k5)

h(k1)

h(k4)

k1

k4 k2

k5
k3

h : U → {0, 1, . . . , m - 1}

hash table size: m

9

Hashing (cont’d)

Example 2: Suppose that the keys are 9-digit social security

numbers (SSN)

Advantages of Hashing

• Reduce the range of array indices handled:

 m instead of |U|

 where m is the hash table size: T[0, …, m-1]

• Storage is reduced.

• O(1) search time (i.e., under assumptions).

11

Collisions

U

(universe of keys)

K

(actual

keys)

0

m - 1

h(k3)

h(k2) = h(k5)

h(k1)

h(k4)

k1

k4 k2

k5
k3

Collisions occur when h(ki)=h(kj), i≠j

12

Collisions (cont’d)

• For a given set K of keys:

– If |K| ≤ m, collisions may or may not happen,

depending on the hash function!

– If |K| > m, collisions will definitely happen (i.e., there

must be at least two keys that have the same hash

value)

• Avoiding collisions completely might not be

easy.

13

Handling Collisions

• We will discuss two main methods:

(1) Chaining

(2) Open addressing

• Linear probing

• Quadratic probing

• Double hashing

14

Chaining

• Idea:

– Put all elements that hash to the same slot into a

linked list

– Slot j contains a pointer to the head of the list of all

elements that hash to j

15

Chaining (cont’d)

• How to choose the size of the hash table m?

– Small enough to avoid wasting space.

– Large enough to avoid many collisions and keep

linked-lists short.

– Typically 1/5 or 1/10 of the total number of elements.

• Should we use sorted or unsorted linked lists?

– Unsorted

• Insert is fast

• Can easily remove the most recently inserted elements

16

Hash Table Operations

• Search

• Insert

• Delete

17

Searching in Hash Tables

Alg.: CHAINED-HASH-SEARCH(T, k)

 search for an element with key k in list T[h(k)]

• Running time depends on the length of the list of

elements in slot h(k)

18

Insertion in Hash Tables

Alg.: CHAINED-HASH-INSERT(T, x)

 insert x at the head of list T[h(key[x])]

• T[h(key[x])] takes O(1) time; insert will take O(1)

time overall since lists are unsorted.

• Note: if no duplicates are allowed, It would take

extra time to check if item was already inserted.

19

Deletion in Hash Tables

Alg.: CHAINED-HASH-DELETE(T, x)

 delete x from the list T[h(key[x])]

• T[h(key[x])] takes O(1) time.

• Finding the item depends on the length of the list

of elements in slot h(key[x])

20

Analysis of Hashing with Chaining:

Worst Case

• How long does it take to

search for an element with a

given key?

• Worst case:

– All n keys hash to the same slot

then O(n) plus time to compute

the hash function

0

m - 1

T

chain

21

Analysis of Hashing with Chaining:

Average Case

• It depends on how well the hash

function distributes the n keys among

the m slots

• Under the following assumptions:

(1) n = O(m)

(2) any given element is equally likely to

hash into any of the m slots (i.e., simple

uniform hashing property)

then → O(1) time plus time to compute

the hash function

n0 = 0

nm – 1 = 0

T

n2

n3

nj

nk

22

Properties of Good Hash Functions

• Good hash function properties
(1) Easy to compute

(2) Approximates a random function

 i.e., for every input, every output is equally likely.

(3) Minimizes the chance that similar keys hash to the
same slot

 i.e., strings such as pt and pts should hash to different slot.

• We will discuss two methods:

– Division method

– Multiplication method

23

The Division Method

• Idea:

– Map a key k into one of the m slots by taking

the remainder of k divided by m

 h(k) = k mod m

• Advantage:

– fast, requires only one operation

•

Disadvantage:

– Certain values of m are bad (i.e., collisions), e.g.,

• power of 2

• non-prime numbers

24

Example

• If m = 2p, then h(k) is just the least

significant p bits of k

– p = 1  m = 2

  h(k) = , least significant 1 bit of k

– p = 2  m = 4

 h(k) = , least significant 2 bits of k

 Choose m to be a prime, not close to a

 power of 2

 Column 2:

 Column 3:

{0, 1}

{0, 1, 2, 3}

k mod 97

k mod 100

m

97
m

100

25

The Multiplication Method

Idea:

(1) Multiply key k by a constant A, where 0 < A < 1

(2) Extract the fractional part of kA

(3) Multiply the fractional part by m

(4) Truncate the result

 h(k) = = m (k A mod 1)

• Disadvantage: Slower than division method

• Advantage: Value of m is not critical

fractional part of kA = kA - kA. ., 12.3 12e g =  

26

Example – Multiplication Method

Suppose k=6, A=0.3, m=32

(1) k x A = 1.8

(2) fractional part:

(3) m x 0.8 = 32 x 0.8 = 25.6

(4)

1.8 1.8 0.8− =  

25.6 25=   h(6)=25

27

Open Addressing

• Idea: store the keys in the table itself

• No need to use linked lists anymore

• Basic idea:

– Insertion: if a slot is full, try another one,

 until you find an empty one.

– Search: follow the same probe sequence.

– Deletion: need to be careful!

• Search time depends on the length of

 probe sequences!

e.g., insert 14

probe sequence: <1, 5, 9>

Generalize hash function notation:

• A hash function contains two arguments now:

 (i) key value, and (ii) probe number

 h(k,p), p=0,1,...,m-1

• Probe sequence:

 <h(k,0), h(k,1), h(k,2), …. >

• Example:

e.g., insert 14

Probe sequence: <h(14,0), h(14,1), h(14,2)>=<1, 5, 9>

Generalize hash function notation:

– Probe sequence must be a permutation of

 <0,1,...,m-1>

– There are m! possible permutations

e.g., insert 14

Probe sequence: <h(14,0), h(14,1), h(14,2)>=<1, 5, 9>

30

Common Open Addressing Methods

• Linear probing

• Quadratic probing

• Double hashing

• None of these methods can generate more than

m2 different probe sequences!

31

Linear probing: Inserting a key

• Idea: when there is a collision, check the next available
position in the table:

h(k,i) = (h1(k) + i) mod m

i=0,1,2,...
• i=0: first slot probed: h1(k)

• i=1: second slot probed: h1(k) + 1

• i=2: third slot probed: h1(k)+2, and so on

• How many probe sequences can linear probing
generate?

 m probe sequences maximum

probe sequence: < h1(k), h1(k)+1 , h1(k)+2 ,>

wrap around

32

Linear probing: Searching for a key

• Given a key, generate a probe

sequence using the same procedure.

• Three cases:

(1) Position in table is occupied with an

element of equal key→ FOUND

(2) Position in table occupied with a

different element → KEEP SEARCHING

(3) Position in table is empty→ NOT FOUND

0

m - 1

wrap around

33

Linear probing: Searching for a key

• Running time depends on the length of

 the probe sequences.

• Need to keep probe sequences

 short to ensure fast search.

0

m - 1

wrap around

34

Linear probing: Deleting a key

• First, find the slot containing the key

 to be deleted.

• Can we just mark the slot as empty?

– It would be impossible to retrieve keys

inserted after that slot was occupied!

• Solution

– “Mark” the slot with a sentinel value

DELETED

• The deleted slot can later be used

for insertion.

0

m - 1

e.g., delete 98

35

Primary Clustering Problem

• Long chunks of occupied slots are created.

• As a result, some slots become more likely than others.

• Probe sequences increase in length.  search time

increases!!

Slot b:

2/m

Slot d:

4/m

Slot e:

5/m

initially, all slots have probability 1/m

36

Quadratic probing

i=0,1,2,...

• Clustering is less serious but still a problem (secondary

 clustering)

• How many probe sequences can quadratic probing

 generate?

m -- the initial position determines probe sequence

37

Double Hashing

(1) Use one hash function to determine the first slot.

(2) Use a second hash function to determine the

increment for the probe sequence:

h(k,i) = (h1(k) + i h2(k)) mod m, i=0,1,...

• Initial probe: h1(k)

• Second probe is offset by h2(k) mod m, so on ...

• Advantage: handles clustering better

• Disadvantage: more time consuming

• How many probe sequences can double hashing

generate?
m2 -- why?

38

Double Hashing: Example

h1(k) = k mod 13

 h2(k) = 1+ (k mod 11)

h(k,i) = (h1(k) + i h2(k)) mod 13

• Insert key 14:

 i=0: h(14,0) = h1(14) = 14 mod 13 = 1

 i=1: h(14,1) = (h1(14) + h2(14)) mod 13

 = (1 + 4) mod 13 = 5

 i=2: h(14,2) = (h1(14) + 2 h2(14)) mod 13

 = (1 + 8) mod 13 = 9

79

69

98

72

50

0

9

4

2

3

1

5

6

7

8

10

11

12

14

	Slide 1: Lecture 11 Hash Tables
	Slide 2: The Search Problem
	Slide 3: Direct Addressing
	Slide 4: Direct Addressing (cont’d)
	Slide 5: Direct Addressing (cont’d)
	Slide 6: Direct Addressing (cont’d)
	Slide 7: Hashing
	Slide 8: Hashing (cont’d)
	Slide 9: Hashing (cont’d)
	Slide 10: Advantages of Hashing
	Slide 11: Collisions
	Slide 12: Collisions (cont’d)
	Slide 13: Handling Collisions
	Slide 14: Chaining
	Slide 15: Chaining (cont’d)
	Slide 16
	Slide 17: Searching in Hash Tables
	Slide 18: Insertion in Hash Tables
	Slide 19: Deletion in Hash Tables
	Slide 20: Analysis of Hashing with Chaining: Worst Case
	Slide 21: Analysis of Hashing with Chaining: Average Case
	Slide 22: Properties of Good Hash Functions
	Slide 23: The Division Method
	Slide 24: Example
	Slide 25: The Multiplication Method
	Slide 26: Example – Multiplication Method
	Slide 27: Open Addressing
	Slide 28: Generalize hash function notation:
	Slide 29: Generalize hash function notation:
	Slide 30: Common Open Addressing Methods
	Slide 31: Linear probing: Inserting a key
	Slide 32: Linear probing: Searching for a key
	Slide 33: Linear probing: Searching for a key
	Slide 34: Linear probing: Deleting a key
	Slide 35: Primary Clustering Problem
	Slide 36: Quadratic probing
	Slide 37: Double Hashing
	Slide 38: Double Hashing: Example

