Lecture 11 Hash Tables

Sultan ALPAR associate professor, IITU s.alpar@iitu.edu.kz

The Search Problem

- Unsorted list
 - O(N)
- Sorted list
 - O(logN) using arrays (i.e., binary search)
 - O(N) using linked lists
- Binary Search tree
 - O(logN) (i.e., balanced tree)
 - O(N) (i.e., unbalanced tree)
- Can we do better than this?
 - Direct Addressing
 - Hashing

Direct Addressing

- Assumptions:
 - Key values are **distinct**
 - Each key is drawn from a universe U = $\{0, 1, \ldots, n 1\}$

- Idea:
 - Store the items in an array, indexed by keys

Direct Addressing (cont'd)

- **Direct-address table** representation:
 - An array T[0 . . . n 1]
 - Each **slot**, or position, in T corresponds to a key in U

For an element x with key k, a pointer to x will be placed in location T[k]

 If there are no elements with key k in the set, T[k] is empty, represented by NIL

Search, insert, delete in O(1) time!

Direct Addressing (cont'd)

Example 1: Suppose that the are integers from 1 to 100 and that there are about 100 records.

Create an array A of 100 items and stored the record whose key is equal to **i** in in **A[i]**.

|K| = |U||K|: # elements in K

|U|: # elements in U

Direct Addressing (cont'd)

Example 2: Suppose that the keys are 9-digit social security numbers (SSN)

Although we could use the same idea, it would be very inefficient (i.e., use an array of 1 billion size to store 100 records)

|K| << |U|

Hashing

Idea:

- Use a function **h** to compute the slot for each key
- Store the element in slot h(k)
- A hash function h transforms a key into an index in a hash table T[0...m-1]:

$$h: U \rightarrow \{0, 1, \ldots, m-1\}$$

• We say that k hashes to slot h(k)

Hashing (cont'd)

 $h: U \rightarrow \{0, 1, \ldots, m-1\}$

hash table size: m

Hashing (cont'd)

Example 2: Suppose that the keys are 9-digit social security numbers (SSN)

Possible hash function

h(*ssn*) = *sss* mod 100 (last 2 digits of ssn) e.g., if *ssn* = 10123411 then *h*(10123411) = 11)

Advantages of Hashing

Reduce the range of array indices handled:
 m instead of |U|
 where m is the hash table size: T[0, ..., m-1]

• Storage is reduced.

• O(1) search time (i.e., under assumptions).

Collisions

Collisions occur when $h(k_i)=h(k_i)$, $i \neq j$

Collisions (cont'd)

- For a given set K of keys:
 - If |K| ≤ m, collisions may or may not happen,
 depending on the hash function!
 - If |K| > m, collisions will definitely happen (i.e., there must be at least two keys that have the same hash value)
- Avoiding collisions completely might not be easy.

Handling Collisions

• We will discuss two main methods:

(1) Chaining

(2) Open addressing

- Linear probing
- Quadratic probing
- Double hashing

Chaining

• Idea:

Put all elements that hash to the same slot into a linked list

 Slot j contains a pointer to the head of the list of all elements that hash to j

Chaining (cont'd)

- How to choose the size of the hash table **m**?
 - Small enough to avoid wasting space.
 - Large enough to avoid many collisions and keep linked-lists short.
 - Typically 1/5 or 1/10 of the total number of elements.
- Should we use sorted or unsorted linked lists?
 - Unsorted
 - Insert is fast
 - Can easily remove the most recently inserted elements

Hash Table Operations

- Search
- Insert
- Delete

Searching in Hash Tables

Alg.: CHAINED-HASH-SEARCH(T, k)

search for an element with key k in list T[h(k)]

 Running time <u>depends</u> on the length of the list of elements in slot h(k)

Insertion in Hash Tables

Alg.: CHAINED-HASH-INSERT(T, x)

insert x at the head of list T[h(key[x])]

T[h(key[x])] takes O(1) time; insert will take O(1) time overall since lists are unsorted.

• <u>Note:</u> if no duplicates are allowed, It would take extra time to check if item was already inserted.

Deletion in Hash Tables

Alg.: CHAINED-HASH-DELETE(T, x) delete x from the list T[h(key[x])]

- T[h(key[x])] takes O(1) time.
- Finding the item <u>depends</u> on the length of the list of elements in slot h(key[x])

Analysis of Hashing with Chaining: Worst Case

 How long does it take to search for an element with a given key?

- Worst case:
 - All n keys hash to the same slot
- then O(n) plus time to compute the hash function

Analysis of Hashing with Chaining: Average Case

- It depends on how well the hash function distributes the n keys among the m slots
- Under the following assumptions:
 (1) n = O(m)

(2) any given element is **equally likely** to hash into any of the **m** slots (i.e., simple uniform hashing property)

then \rightarrow O(1) time plus time to compute the hash function

Properties of Good Hash Functions

Good hash function properties

- (1) Easy to compute
- (2) Approximates a random function
 - i.e., for every input, every output is equally likely.
- (3) Minimizes the chance that similar keys hash to the same slot

i.e., strings such as pt and pts should hash to different slot.

• We will discuss two methods:

- Division method
- Multiplication method

The Division Method

• Idea:

– Map a key k into one of the m slots by taking the remainder of k divided by m h(k) = k mod m

Advantage:

- fast, requires only one operation

Disadvantage:

- Certain values of m are bad (i.e., collisions), e.g.,
 - power of 2
 - non-prime numbers

Example

_			m	m
•	If $m = 2^p$ then $h(k)$ is just the least		97	100
-	$\Pi \Pi = \Sigma^{\prime}, \Pi C \Pi \Pi (K) IS JUST THE TEAST$	16838	57	38
	significant n hits of k	5758	35	58
	Significant p bits of K	10113	25	13
	$-n-1 \rightarrow m-2$	21051	55 11	10 51
	$-p-1 \rightarrow m-2$	5627	1	27
	$\rightarrow h(k) = (0, 1)$ locat cignificant 1 bit of k	23010	21	10
	$\rightarrow n(\kappa) - \{0, 1\}$, least significant 1 bit of κ	7419	47	19
	$-n-2 \rightarrow m-1$	16212	13	12
	$-p-z \rightarrow m-4$	4086	12	86
	$\rightarrow h(k) - (0, 1, 2, 3)$ loget significant 2 hits of k	2749	33	49
	$\rightarrow n(\kappa) - \{0, 1, 2, 3\}$, least significant 2 bits of κ	12767	60	67
_		9084	63	84
•	Choose m to be a prime, not close to a	12060	32	60 05
		32223	21 83	20 43
	power of 2	25089	63	89
		21183	37	83
	Column 2: k mod 97	25137	14	37
		25566	55	10 38 58 13 15 51 27 10 19 12 86 49 67 84 60 25 43 89 83 37 66 66 78 95 11 67
	• Column 3: k mod 100	26966	0	66
		4978	31	78
		20495	28	95
		10311	29 10	11 67
		11201	10	10

The Multiplication Method

Idea:

- (1) Multiply key k by a constant A, where 0 < A < 1
- (2) Extract the fractional part of kA
- (3) Multiply the fractional part by m
- (4) Truncate the result

$$h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor = \lfloor m (k A \mod 1) \rfloor$$

e.g., $\lfloor 12.3 \rfloor = 12$ fractional part of kA = kA

- **Disadvantage:** Slower than division method
- Advantage: Value of m is not critical

- | kA |

Example – Multiplication Method

Suppose k=6, A=0.3, m=32

(1)
$$k \times A = 1.8$$

(2) fractional part: $1.8 - \lfloor 1.8 \rfloor = 0.8$

(3) m x $0.8 = 32 \times 0.8 = 25.6$

(4)
$$\lfloor 25.6 \rfloor = 25$$
 h(6)=25

Open Addressing

- Idea: store the keys in the table itself
- No need to use linked lists anymore
- Basic idea:
 - <u>Insertion</u>: if a slot is full, try another one, until you find an empty one.
 - <u>Search</u>: follow the same probe sequence.
 - <u>Deletion</u>: need to be careful!
- Search time depends on the length of probe sequences!

Generalize hash function notation:

A hash function contains two arguments now:
 (i) key value, and (ii) probe number
 e.g., ins

h(k,p), p=0,1,...,m-1

- Probe sequence:
 <h(k,0), h(k,1), h(k,2), >
- Example:

Probe sequence: <h(14,0), h(14,1), h(14,2)>=<1, 5, 9>

Generalize hash function notation:

– Probe sequence must be a permutation of <0,1,...,m-1>

– There are **m!** possible permutations

Probe sequence: <h(14,0), h(14,1), h(14,2)>=<1, 5, 9>

Common Open Addressing Methods

- Linear probing
- Quadratic probing
- Double hashing
- None of these methods can generate more than m² different probe sequences!

Linear probing: Inserting a key

 Idea: when there is a collision, check the <u>next</u> available position in the table:

> $h(k,i) = (h_1(k) + i) \mod m$ i=0,1,2,...

- i=0: first slot probed: h₁(k)
- i=1: second slot probed: $h_1(k) + 1$
- i=2: third slot probed: $h_1(k)+2$, and so on

probe sequence: $< h_1(k), h_1(k)+1, h_1(k)+2, ... >$

How many probe sequences can linear probing generate?

m probe sequences maximum

wrap around

Linear probing: Searching for a key

- Given a key, generate a probe sequence using the same procedure.
- Three cases:
 - (1) Position in table is occupied with an element of equal key → FOUND
 - (2) Position in table occupied with a different element \rightarrow KEEP SEARCHING

(3) Position in table is empty \rightarrow NOT FOUND

Linear probing: Searching for a key

- Running time depends on the length of the probe sequences.
- Need to keep probe sequences short to ensure fast search.

Linear probing: Deleting a key

- First, find the slot containing the key to be deleted.
- Can we just mark the slot as empty?
 - It would be impossible to retrieve keys inserted after that slot was occupied!
- Solution
 - "Mark" the slot with a sentinel value DELETED
- The deleted slot can later be used for insertion.

	0	
)	1	79
	2	1 kons
	3	
	4	69
	5	98
	6	
	7	72
	8	
	9	14
	10	
	11	50
n	12	2.39

Primary Clustering Problem

- Long chunks of occupied slots are created.
- As a result, some slots become more likely than others.
- Probe sequences increase in length. ⇒ search time increases!!

initially, all slots have probability 1/m

Quadratic probing

$$h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m$$
, where $h': U - - > (0, 1, ..., m - 1)$

i=0,1,2,...

- Clustering is less serious but still a problem (secondary clustering)
- How many probe sequences can quadratic probing generate?

m -- the initial position determines probe sequence

Double Hashing

- (1) Use one hash function to determine the first slot.
 (2) Use a second hash function to determine the increment for the probe sequence:
 h(k,i) = (h₁(k) + i h₂(k)) mod m, i=0,1,...
- Initial probe: h₁(k)
- Second probe is offset by $h_2(k) \mod m$, so on ...
- Advantage: handles clustering better
- Disadvantage: more time consuming
- How many probe sequences can double hashing generate?

Double Hashing: Example

 $h_1(k) = k \mod 13$ () $h_2(k) = 1 + (k \mod 11)$ $h(k,i) = (h_1(k) + i h_2(k)) \mod 13$ • Insert key 14: $i=0: h(14,0) = h_1(14) = 14 \mod 13 = 1$ $i=1: h(14,1) = (h_1(14) + h_2(14)) \mod 13$ $= (1 + 4) \mod 13 = 5$ i=2: $h(14,2) = (h_1(14) + 2 h_2(14)) \mod 13$ $= (1 + 8) \mod 13 = 9$