
Design of Algorithms

Data Structures

Lecture 10: Elementary Data Structures

Sultan ALPAR

associate professor, IITU

s.alpar@iitu.edu.kz

L10 Elementary DS 1

Introduction

• Sets manipulated by algorithm can grow, shrink, or
change over time.

• Called dynamic set.

• Types of operations to be performed on sets:
• Insert, delete, search, etc.

• Extract the smallest element, etc.

L10 Elementary DS 2

Introduction (continue)

• Operations to be performed on dynamic sets:
• queries: return information about the set.

• Search, minimum, maximum

• Successor, predecessor.

• modifying operations: change the set.
• Insert, delete

• Data structures that can support any of these
operations on a set of size n: O (log n)

L10 Elementary DS 3

10.1 Stacks and Queues

• Stacks and Queues
• dynamic set
• elements removed from the set by the DELETE operation is

pre-specified

• Stack
• LIFO policy: Last-In First-Out
• Delete the element most recently inserted
• Push (insert), pop (delete)

• Queue
• FIFO policy: First-In First-Out
• Enqueue (insert), dequeue (delete)

L10 Elementary DS 4

An array implementation of a stack S

L10 Elementary DS 5

• empty, underflows, overflows

STACK_EMPTY(S)

1 if S.top == 0

2 return TRUE

3 else return FALSE

L10 Elementary DS 6

L10 Elementary DS 7

PUSH(S,x)

1 S.top = S.top + 1

2 S[S.top] = x

POP(S)

1 if STACK-EMPTY(S)

2 then error “underflow”

3 else S.top = S.top -1

4 return S[S.top + 1]

L10 Elementary DS 8

An array implementation of a queue Q

ENQUEUE(Q, x)

1 Q[Q.tail] = x

2 if Q.tail == Q.length

3 Q.tail = 1

4 else Q.tail = Q.tail +1

Anything wrong?

L10 Elementary DS 9

DEQUEUE(Q)

1 x = Q[Q.head]

2 if Q.head == Q.length

3 Q.head = 1

4 else Q.head = Q.head +1

5 return x

L10 Elementary DS 10

10.2 Linked lists

• Data structure in which the objects are arranged in
a linear order.

• The order in a linked list is determined by a pointer
in each object.

• The order in an array is determined by the array
indices.

• Singly linked list, doubly linked list, circular list.

• Head and tail.

L10 Elementary DS 11

10.2 Linked lists

L10 Elementary DS 12

List-Insert(L, x), x.key=25

List-Delete(L, x), x.key=4

LIST_SEARCH(L,k)

1 x = L.head

2 while x ≠ NIL and x.key ≠ k

3 x = x.next

4 return x

O(n) time in the worst case

L10 Elementary DS 13

LIST_INSERT(L,x)

1 x.next = L.head

2 if L.head ≠ NIL

3 L.head.prev = x

4 L.head = x

5 x.prev = NIL

 O(1)

L10 Elementary DS 14

LIST_DELETE(L,x)

1 if x.prev ≠ NIL

2 next[prev[x]] = x.next

3 else L.head = x.next

4 if x.next ≠ NIL

5 x.next.prev = x.prev

• (Call LIST_SEARCH first O(n))

O(1) or O(n)

L10 Elementary DS 15

A Sentinel is a dummy object that allows us to
simplify boundary conditions,

L10 Elementary DS 16

List-Insert’(L, x), x.key=25

List-Delete’(L, x), x.key=4

LIST_DELETE’(L,x)

1 x.prev.next = x.next

2 x.next.prev = x.prev

L10 Elementary DS 17

LIST_SEARCH’(L,k)

1 x = L.nil.next

2 while x ≠ L.nil and x.key ≠ k

3 x = x.next

4 return x

L10 Elementary DS 18

LIST_INSERT’(L,x)

1 x.next = L.nil.next

2 L.nil.next.prev = x

3 L.nil.next = x

4 x.prev = L.nil

L10 Elementary DS 19

Remarks on sentinels

• Rarely reduce the asymptotic time bounds of data
structure operations.

• Can only reduce constant factors.

• Can improve the clarity of code rather than speed.

• The extra storage used by the sentinels, for small
lists, can represent significant wasted memory.

• Use sentinels only when they truly simplify the
code.

L10 Elementary DS 20

11.3 Implementing pointers and objects

• A multiple-array representation of objects

L10 Elementary DS 21

A single array representation of objects

L10 Elementary DS 22

Allocating and freeing objects:

• Garbage collector
• Determining which objects are unused.

• Free list
• Singly linked list that keeps the free objects

• Uses only the “next” pointer.

• Stack.

L10 Elementary DS 23

Allocating and freeing objects--garbage collector

L10 Elementary DS 24

Allocate_object(),LIST_INSERT(L,4),Key(4)=25

L10 Elementary DS 25

LIST_DELETE(L,5), FREE_OBJECT(5)

L10 Elementary DS 26

L10 Elementary DS 27

Two link lists

L10 Elementary DS 28

10.4 Representing rooted trees

• Binary trees:
• parent, left(-child), right(-child)

• p[x] = NIL ➔ x is the root

• x has no left child ➔ left[x] = NIL

• x has no right child ➔ right[x] = NIL

L10 Elementary DS 29

Binary trees

L10 Elementary DS 30

10.4 Representing rooted trees

• Rooted trees with unbounded branching:
• parent, left-child, right-sibling

• p[x] = NIL ➔ x is the root

• left-child[x]: points to the leftmost child of x.

• right-sibling[x]: points to the sibling of x immediately to
the right.

• x has no children ➔ left-child[x] = NIL

• x is the rightmost child of its parent

 ➔ right-sibling[x] = NIL

L10 Elementary DS 31

Rooted tree with unbounded branching

L10 Elementary DS 32

• Thank u for Attention!

33

	Slide 1: Design of Algorithms
	Slide 2: Introduction
	Slide 3: Introduction (continue)
	Slide 4: 10.1 Stacks and Queues
	Slide 5: An array implementation of a stack S
	Slide 6
	Slide 7
	Slide 8
	Slide 9: ENQUEUE(Q, x)
	Slide 10: DEQUEUE(Q)
	Slide 11: 10.2 Linked lists
	Slide 12: 10.2 Linked lists
	Slide 13: LIST_SEARCH(L,k)
	Slide 14: LIST_INSERT(L,x)
	Slide 15: LIST_DELETE(L,x)
	Slide 16: A Sentinel is a dummy object that allows us to simplify boundary conditions,
	Slide 17: LIST_DELETE’(L,x)
	Slide 18: LIST_SEARCH’(L,k)
	Slide 19: LIST_INSERT’(L,x)
	Slide 20: Remarks on sentinels
	Slide 21: 11.3 Implementing pointers and objects
	Slide 22: A single array representation of objects
	Slide 23: Allocating and freeing objects:
	Slide 24: Allocating and freeing objects--garbage collector
	Slide 25: Allocate_object(),LIST_INSERT(L,4),Key(4)=25
	Slide 26: LIST_DELETE(L,5), FREE_OBJECT(5)
	Slide 27
	Slide 28: Two link lists
	Slide 29: 10.4 Representing rooted trees
	Slide 30: Binary trees
	Slide 31: 10.4 Representing rooted trees
	Slide 32: Rooted tree with unbounded branching
	Slide 33

