Design of Algorithms

Data Structures

Lecture 10: Elementary Data Structures

Sultan ALPAR associate professor, IITU s.alpar@iitu.edu.kz

Introduction

- Sets manipulated by algorithm can grow, shrink, or change over time.
- Called dynamic set.
- Types of operations to be performed on sets:
 - Insert, delete, search, etc.
 - Extract the smallest element, etc.

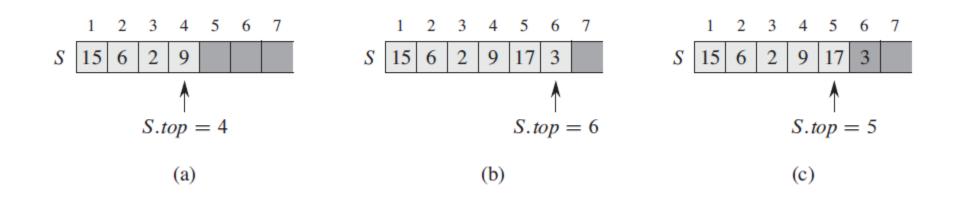
Introduction (continue)

- Operations to be performed on dynamic sets:
 - queries: return information about the set.
 - Search, minimum, maximum
 - Successor, predecessor.
 - modifying operations: change the set.
 - Insert, delete
- Data structures that can support any of these operations on a set of size n: O (log n)

10.1 Stacks and Queues

- Stacks and Queues
 - dynamic set
 - elements removed from the set by the DELETE operation is pre-specified
- Stack
 - LIFO policy: Last-In First-Out
 - Delete the element most recently inserted
 - Push (insert), pop (delete)
- Queue
 - FIFO policy: First-In First-Out
 - Enqueue (insert), dequeue (delete)

An array implementation of a stack S



• empty, underflows, overflows

```
STACK_EMPTY(S)
1 if S.top == 0
2 return TRUE
3 else return FALSE
```

PUSH(S,x) 1 S.top = S.top + 1 2 S[S.top] = x

POP(S) 1 if STACK-EMPTY(S)

- 2 then error "underflow"
- 3 else S.top = S.top 1
- 4 return S[S.top + 1]

An array implementation of a queue Q

(a)
$$Q$$

 Q
 Q

(b)
$$Q \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 3 & 5 & & & & 15 & 6 & 9 & 8 & 4 & 17 \\ & & & & & & & \\ Q \cdot tail = 3 & Q \cdot head = 7 \end{bmatrix}$$

(c)
$$Q \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 3 & 5 & & & & 15 & 6 & 9 & 8 & 4 & 17 \\ \hline 0 & & & & & & \\ Q.tail = 3 & Q.head = 8 \end{bmatrix}$$

$$\mathsf{ENQUEUE}(Q, X)$$

$$1 Q[Q.tail] = x$$

$$2 extbf{if} Q.tail == Q.length$$

$$3 Q.tail = 1$$

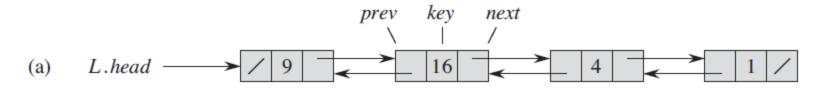
$$4 extbf{else} Q.tail = Q.tail + 1$$

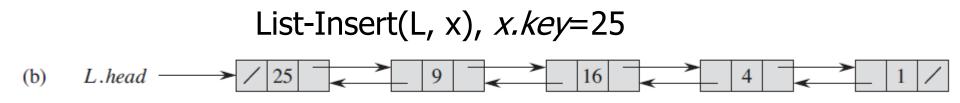
Anything wrong?

DEQUEUE(Q)

10.2 Linked lists

- Data structure in which the objects are arranged in a linear order.
- The order in a linked list is determined by a pointer in each object.
- The order in an array is determined by the array indices.
- Singly linked list, doubly linked list, circular list.
- Head and tail.







LIST_SEARCH(*L*,*k*)

- 1 x = L.head
- 2 while $x \neq \text{NIL}$ and $x \cdot key \neq k$
- 3 x = x.next
- 4 return *x*

O(n) time in the worst case

LIST_INSERT(*L*,*x*)

x.next = *L.head* **if** *L.head* ≠ NIL
 L.head.prev = x
 L.head = x
 x.prev = NIL

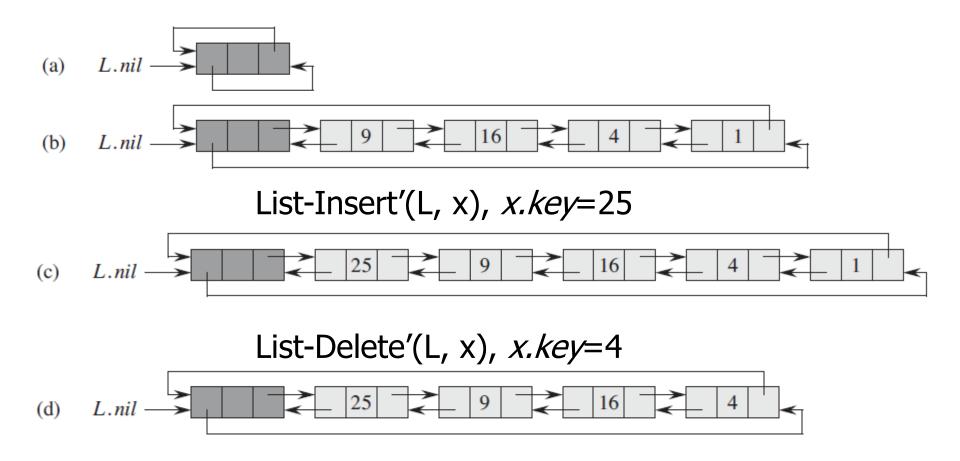
O(1)

LIST_DELETE(*L*,*x*)

- 1 if $x.prev \neq NIL$ 2 next[prev[x]] = x.next3 else L.head = x.next4 if $x.next \neq NIL$ 5 x.next.prev = x.prev
- (Call LIST_SEARCH first O(n))

O(1) or O(n)

A Sentinel is a dummy object that allows us to simplify boundary conditions,



LIST_DELETE'(*L*,*x*)

- 1 x.prev.next = x.next
- 2 x.next.prev = x.prev

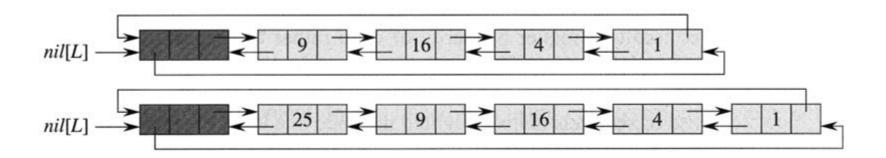
LIST_SEARCH'(*L*,*k*)

- 1 x = L.nil.next
- 2 while $x \neq L$.*nil* and x.*key* $\neq k$
- 3 x = x.next
- 4 **return** *x*

LIST_INSERT'(*L*,*x*)

x.next = L.nil.next
 L.nil.next.prev = x
 L.nil.next = x

$$4 \quad x.prev = L.nil$$

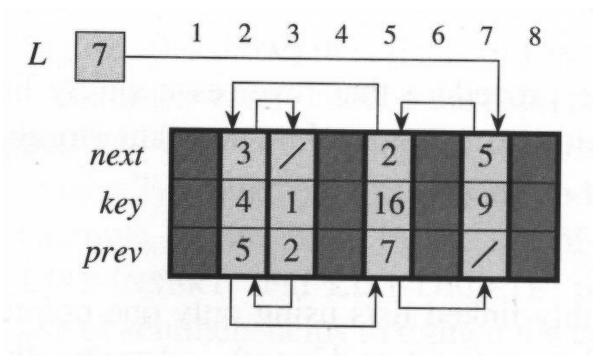


Remarks on sentinels

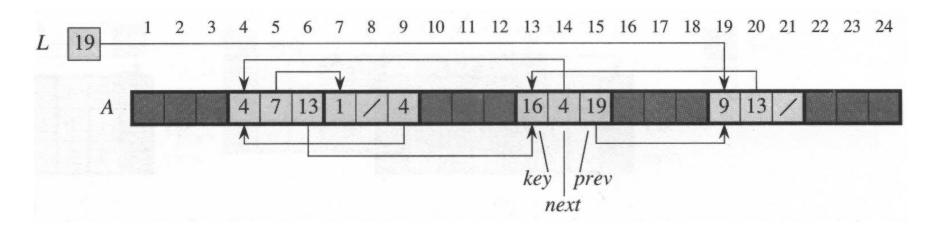
- Rarely reduce the asymptotic time bounds of data structure operations.
- Can only reduce constant factors.
- Can improve the clarity of code rather than speed.
- The extra storage used by the sentinels, for small lists, can represent significant wasted memory.
- Use sentinels only when they truly simplify the code.

11.3 Implementing pointers and objects

• A multiple-array representation of objects



A single array representation of objects



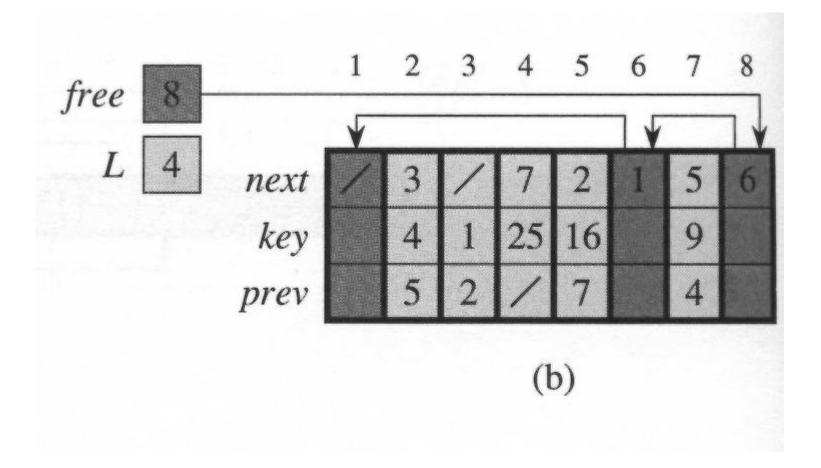
Allocating and freeing objects:

- Garbage collector
 - Determining which objects are unused.
- Free list
 - Singly linked list that keeps the free objects
 - Uses only the "next" pointer.
 - Stack.

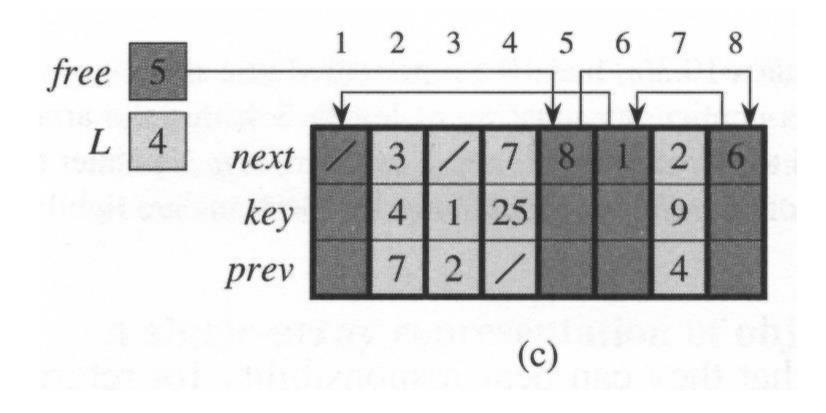
Allocating and freeing objects--garbage collector



Allocate_object(),LIST_INSERT(L,4),Key(4)=25



LIST_DELETE(*L*,5), FREE_OBJECT(5)

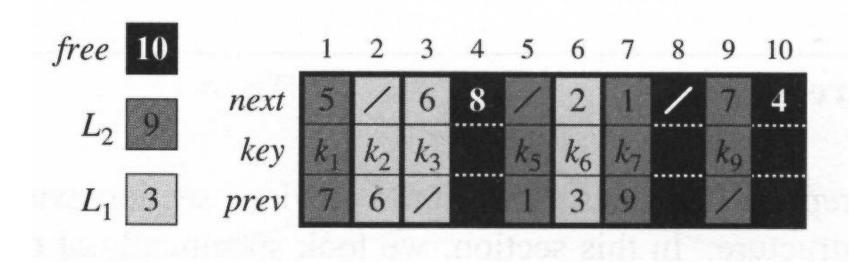


ALLOCATE-OBJECT () **if** free == NIL **error** "out of space" **else** x = free4 free = x.next**return** x

FREE-OBJECT(x)

- 1 x.next = free
- 2 free = x

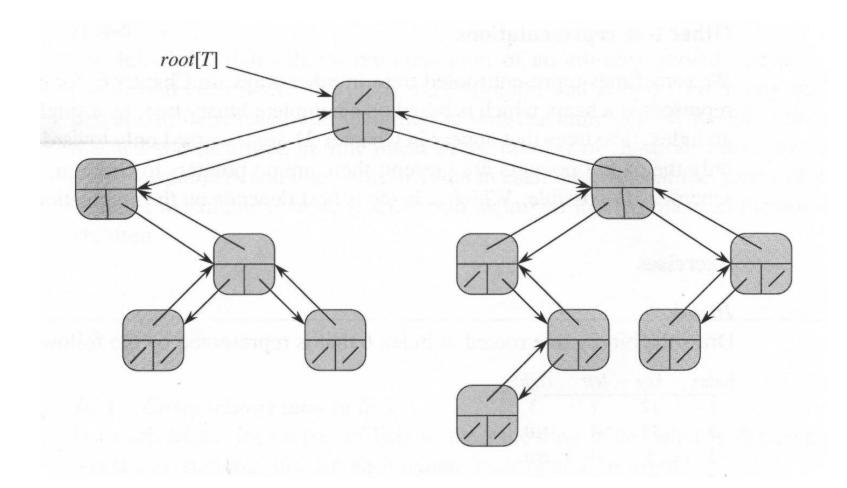
Two link lists



10.4 Representing rooted trees

- Binary trees:
 - parent, left(-child), right(-child)
 - $p[x] = NIL \rightarrow x$ is the root
 - x has no left child \rightarrow left[x] = NIL
 - x has no right child \rightarrow right[x] = NIL

Binary trees

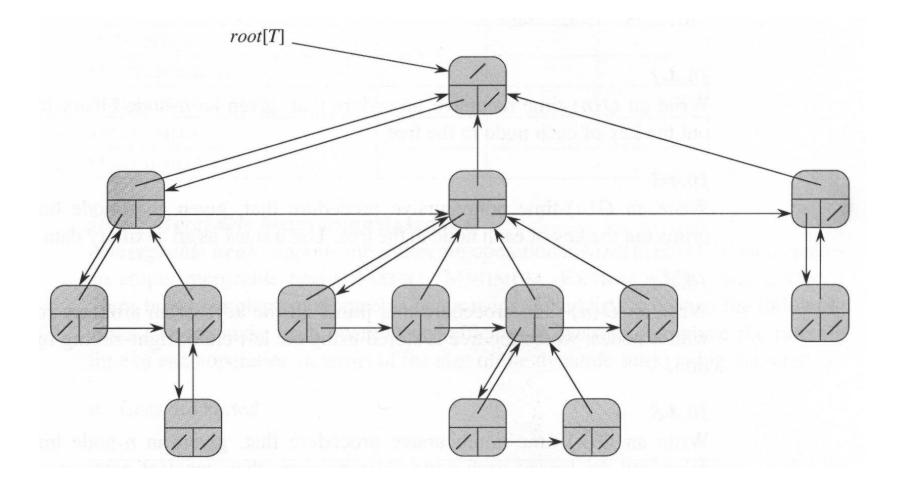


10.4 Representing rooted trees

- Rooted trees with unbounded branching:
 - parent, left-child, right-sibling
 - $p[x] = NIL \rightarrow x$ is the root
 - left-child[x]: points to the leftmost child of x.
 - right-sibling[x]: points to the sibling of x immediately to the right.
 - x has no children → left-child[x] = NIL
 - x is the rightmost child of its parent

 \rightarrow right-sibling[x] = NIL

Rooted tree with unbounded branching



• Thank u for Attention!