Design of Algorithms

Data Structures

Lecture 10: Elementary Data Structures

Sultan ALPAR
associate professor, 1ITU

s.alpar@iitu.edu.kz

Introduction

* Sets manipulated by algorithm can grow, shrink, or
change over time.

 Called dynamic set.

* Types of operations to be performed on sets:
* Insert, delete, search, etc.
e Extract the smallest element, etc.

Introduction (continue)

* Operations to be performed on dynamic sets:

* queries: return information about the set.
e Search, minimum, maximum
* Successor, predecessor.

* modifying operations: change the set.
* Insert, delete

e Data structures that can support any of these
operations on a set of size n: O (log n)

10.1 Stacks and Queues

e Stacks and Queues

e dynamic set

* elements removed from the set by the DELETE operation is
pre-specified

 Stack
* LIFO policy: Last-In First-Out
* Delete the element most recently inserted
e Push (insert), pop (delete)

* Queue
* FIFO policy: First-In First-Out
* Enqueue (insert), dequeue (delete)

L10 Elementary DS 4

An array implementation of a stack S

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 5 6
S 1156129 S (15|62 |9 |17]3 S|15{6 (2|9 173
S.top = 4 S.top =06 S.top=75

(a) (b) (c)

L10 Elementary DS 5

* empty, underflows, overflows

STACK _EMPTY(S)

1 if S.top ==

2 return TRUE
3 else return FALSE

L10 Elementary DS

PUSH(S, x)
1 Stop=S.top+1
2 S[S.top] =x

POP(S)

1 if STACK-EMPTY(S)

2 then error “underflow”

3 else S.top = S.top -1

4 return S[S.top + 1]

L10 Elementary DS

An array implementation of a queue Q

1 2 3 4 5 6 7 8 9 10 11 12

@ o [T e [>T+ [+ [
| ¢

O.head =7 O0.tail = 12

1 2 3 4 5 6 7 8 9 10 11 12

® o[3[sT T T i5]6]o]8]4]17
A }

O.tail =3 Q.head =7

1 2 3 4 5 6 7 8 9 10 11 12

© o[3[s T [i5]6]o]s]4]17
) }

0.tail =3 0.head = 8

L10 Elementary DS

ENQUEUE(Q, X)

1Q[Q.tail] = x
2 1f Q.tall == Q.length
3 Q.taill =1

4 else Q.tail = Q.tail +1

Anything wrong?

DEQUEUE(Q)

1 x=Q[Q.head]

2 1f Q.head == Q.length

3 Q.head =1

4 else Q.head = Q.head +1
5 return x

10

10.2 Linked lists

e Data structure in which the objects are arranged in
a linear order.

* The order in a linked list is determined by a pointer
in each object.

* The order in an array is determined by the array
indices.

* Singly linked list, doubly linked list, circular list.
* Head and tail.

11

(a)

(c)

10.2 Linked lists

L.head —> /

prev key next
\ | /
— > B
< |16 o

/

25

_ﬂ.
fote———————

List-Delete(L, x), x.key=4

9

.
f—————

/

25

16

List-Insert(L, x), x.key=25

—_

< |9

J B .
e T

16

L10 Elementary DS

12

LIST_SEARCH(L,k)

1 x = L.head

2 while x # NIL and Xx.key # k
3 X = X.next

4 return X

O(n) time In the worst case

13

LIST INSERT(L,x)

1 x.next = L.head

2 If L.head # NIL

3 L.head.prev = X
4 L.head =x

5 X.prev = NIL

O(1)

14

LIST DELETE(LX)

1 1f x.prev # NIL

2 next[prev[x]] = x.next
3else L.head = x.next

4 1f x.next # NIL

5 X.next.prev = x.prev

e (Call LIST_SEARCH first O(n))
O(1) or O(n)

15

A Sentinel is a dummy object that allows us to

simplify boundary conditions,

(a) L.nil — =

(b) L.m’f—L: ol |9 Tl (16| T 4] T | 1] <
List-Insert’(L, x), x.key=25

© L.nil —> > [2s] L o] L [ue] G 4] L |
List-Delete’(L, x), x.key=4

(d) L.nil —> <L [25] <L 9] <L 16| [TL |4 <

L10 Elementary DS

16

LIST DELETE’(L,x)

1 x.prev.next = x.next
2 x.next.prev = x.prev

17

LIST SEARCH’(L k)

1 x = L.nil.next

2 while x # L.nil and x.key # k
3 X = X.next

4 return X

18

LIST INSERT’(L,x)

1 x.next = L.nil.next
2 L.nil.next.prev = x
3 L.nil.next = x
4 x.prev = L.nil

nil[L)]

=

25

My
|
iy
|
ty
|
My
|
A

L10 Elementary DS 19

Remarks on sentinels

* Rarely reduce the asymptotic time bounds of data
structure operations.

* Can only reduce constant factors.
e Can improve the clarity of code rather than speed.

* The extra storage used by the sentinels, for small
lists, can represent significant wasted memory.

e Use sentinels only when they truly simplify the
code.

20

11.3 Implementing pointers and objects

* A multiple-array representation of objects

next
key

prev

L10 Elementary DS 21

A single array representation of objects

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

v [¥

Y |

A

>1 O =

\[/

key | prev
next

L10 Elementary DS 22

Allocating and freeing objects:

* Garbage collector
* Determining which objects are unused.

* Free list
* Singly linked list that keeps the free objects
e Uses only the “next” pointer.
* Stack.

23

Allocating and freeing objects--garbage collector

next g

key

prev |

L10 Elementary DS 24

Allocate object(),LIST INSERT(L,4),Key(4)=25

next

key

prev

L10 Elementary DS 25

LIST_DELETE(L,5), FREE_OBJECT(5)

L10 Elementary DS

26

ALLOCATE-OBIJECT ()

I if free == NIL

2 error “‘out of space”
3 else x = free

4 free = Xx.next

S return x

FREE-OBJECT (x)

I x.next = free
2 free = x

L10 Elementary DS

27

Two link lists

L10 Elementary DS

28

10.4 Representing rooted trees

* Binary trees:
 parent, left(-child), right(-child)
e p[x] = NIL => x is the root
* x has no left child = left[x] = NIL
* x has no right child = right[x] = NIL

29

Binary trees

root|T]

L10 Elementary DS

30

10.4 Representing rooted trees

* Rooted trees with unbounded branching:
e parent, left-child, right-sibling

p[x] = NIL = x is the root
left-child[x]: points to the leftmost child of x.
right-sibling[x]: points to the sibling of x immediately to
the right.
X has no children = left-child[x] = NIL
X is the rightmost child of its parent

=>» right-sibling[x] = NIL

31

Rooted tree with unbounded branching

root|T]

bil

L10 Elementary DS 32

Thank u for Attention!

33

	Slide 1: Design of Algorithms
	Slide 2: Introduction
	Slide 3: Introduction (continue)
	Slide 4: 10.1 Stacks and Queues
	Slide 5: An array implementation of a stack S
	Slide 6
	Slide 7
	Slide 8
	Slide 9: ENQUEUE(Q, x)
	Slide 10: DEQUEUE(Q)
	Slide 11: 10.2 Linked lists
	Slide 12: 10.2 Linked lists
	Slide 13: LIST_SEARCH(L,k)
	Slide 14: LIST_INSERT(L,x)
	Slide 15: LIST_DELETE(L,x)
	Slide 16: A Sentinel is a dummy object that allows us to simplify boundary conditions,
	Slide 17: LIST_DELETE’(L,x)
	Slide 18: LIST_SEARCH’(L,k)
	Slide 19: LIST_INSERT’(L,x)
	Slide 20: Remarks on sentinels
	Slide 21: 11.3 Implementing pointers and objects
	Slide 22: A single array representation of objects
	Slide 23: Allocating and freeing objects:
	Slide 24: Allocating and freeing objects--garbage collector
	Slide 25: Allocate_object(),LIST_INSERT(L,4),Key(4)=25
	Slide 26: LIST_DELETE(L,5), FREE_OBJECT(5)
	Slide 27
	Slide 28: Two link lists
	Slide 29: 10.4 Representing rooted trees
	Slide 30: Binary trees
	Slide 31: 10.4 Representing rooted trees
	Slide 32: Rooted tree with unbounded branching
	Slide 33

