Chapter 9 Medians and Order Statistics

Sultan ALPAR associate professor, IITU s.alpar@iitu.edu.kz

Outline

- Minimum and maximum
- Selection in expected linear time
- Selection in worst-case linear time

Order statistics

- The *i*th order statistic of a set of *n* elements is the *i*th smallest element.
- ▶ The minimum is the first order statistic (*i* = 1).
- The maximum is the *n*th order statistic (i = n).
- A median is the "halfway point" of the set.
- When *n* is odd, the median is unique, at i = (n + 1)/2.
- When *n* is even, there are two medians:
 - The lower median: $i = \lfloor (n+1)/2 \rfloor$
 - The upper median: $i = \lceil (n+1)/2 \rceil$
 - We mean lower median when we use the phrase "the median".

The selection problem

- How can we find the *i*th order statistic of a set and what is the running time?
- **Input:** A set *A* of *n* (distinct) number and a number *i*, with $1 \le i \le n$.
- Output: The element $x \in A$ that is larger than exactly *i*-1 other elements of *A*.
- The selection problem can be solved in O(nlgn) time.
 - Sort the numbers using an O(nlgn)-time algorithm, such as heapsort or merge sort.
 - Then return the *i*th element in the sorted array.
- Are there faster algorithms?
 - An O(n)-time algorithm would be presented in this chapter.

Finding minimum

- ▶ We can easily obtain an upper bound of n-1 comparisons for finding the minimum of a set of n elements.
 - Examine each element in turn and keep track of the smallest one.
 - The algorithm is optimal, because each element, except the minimum, must be compared to a smaller element at least once.

MINIMUM(A)

- 1. $min \leftarrow A[1]$
- **2.** for $i \leftarrow 2$ to length [A]
- 3. do if min > A[i]
- 4. then $min \leftarrow A[i]$
- 5. **return** min
- The maximum can be found in exactly the same way by replacing the > with < in the above algorithm.</p>

5

Simultaneous minimum and maximum

- Some applications need both the minimum and maximum.
 - ▶ Find the minimum and maximum independently, using *n* 1 comparisons for each, for a total of 2*n*-2 comparisons.
- In fact, at most 3*n*/2 comparisons are needed:
 - Maintain the minimum and maximum of elements seen so far.
 - Process elements in pairs.
 - Compare the elements of a pair to each other.
 - Then compare the larger element to the maximum so far, and compare the smaller element to the minimum so far.
- This leads to only 3 comparisons for every 2 elements.

Simultaneous minimum and maximum

An observation

- If we compare the elements of a pair to each other, the larger can't be the minimum and the smaller can't be the maximum.
- So we just need to compare the larger to the current maximum and the smaller to the current minimum.
- It costs 3 comparisons for every 2 elements.
 - The previous method costs 2 comparisons for each element.

Simultaneous minimum and maximum

- Setting up the initial values for the min and max depends on whether n is odd or even.
 - If *n* is even, compare the first two elements and assign the larger to max and the smaller to min.
 - If *n* is odd, set both min and max to the first element.
- If *n* is even, # of comparisons $= \frac{3(n-2)}{n} + 1 = \frac{3n}{n} 2$.
- If *n* is odd, # of comparisons $=\frac{3(n-1)}{2} = 3\lfloor n/2 \rfloor$
- In either case, the # of comparisons is $\leq 3 \lfloor n/2 \rfloor$

Outline

- Minimum and maximum
- Selection in expected linear time
- Selection in worst-case linear time

Selection in expected linear time

- In fact, selection of the *i*th smallest element of the array A can be done in $\Theta(n)$ time.
- We first present a randomized version in this section and then present a deterministic version in the next section.
- ▶ The function RANDOMIZED-SELECT:
 - is a divide-and-conquer algorithm,
 - uses RANDOMIZED-PARTITION from the quicksort algorithm in Chapter 7, and
 - recurses on one side of the partition only.

RANDOMIZED-SELECT procedure

- 1. RANDOMIZED-SELECT(A, p, r, i)
- **2. if** p = r
- 3. then return A[p]
- 4. $q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)$

5.
$$k \leftarrow q - p + 1$$

- 6. **if** i = k /* the pivot value is the answer */
- 7. then return A[q]
- 8. elseif i < k
- 9. **then return** RANDOMIZED-SELECT(A, p, q –1, i)
- 10. else return RANDOMIZED-SELECT(A, q, r, i k)

RANDOMIZED-SELECT procedure

Algorithm analysis

• The worst case: always recurse on a subarray that is only 1 element smaller than the previous subarray.

$$T(n) = T(n-1) + \Theta(n)$$
$$= \Theta(n^2)$$

• The **best case:** always recurse on a subarray that has half of the elements smaller than the previous subarray.

$$T(n) = T(n/2) + \Theta(n)$$

= $\Theta(n)$ (Master Theorem, case3)

Algorithm analysis

• The average case:

- We will show that $T(n) = \Theta(n)$.
- For 1 ≤ k ≤ n, the probability that the subarray A[p .. q] has k elements is 1/n.
- To obtain an upper bound, we assume that T(n) is monotonically increasing and that the ith smallest element is always in the larger subarray.
- So, we have

$$T(n) \leq \frac{1}{n} \sum_{k=1}^{n} (T(\max(k-1, n-k) + O(n))).$$

$$T(n) \leq -\sum_{k=1}^{n} (T(\max(k-1, n-k) + O(n))) = -\sum_{k=1}^{n} (T(\max(k-1, n-k))) + O(n))$$

$$\leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} T(k) + O(n).$$

_ _ _ _ _

Algorithm analysis

E[T(n)]

- Solve this recurrence by substitution:
 - Assume $T(n) \leq cn$ for sufficiently large c.
 - The function described by the O(n) term is bounded by an for all n > 0.

• Thus, if we assume that

- T(n) = O(1) for
- ▶ *n* < 2*c*/(*c* -4*a*),
- we have T(n) = O(n).

$$\leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + an$$

$$= \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k \right) + an$$

$$= \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(\lfloor n/2 \rfloor - 1) \lfloor n/2 \rfloor}{2} \right) + an$$

$$\leq \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(n/2 - 2)(n/2 - 1)}{2} \right) + an$$

$$= \frac{2c}{n} \left(\frac{n^2 - n}{2} - \frac{n^2/4 - 3n/2 + 2}{2} \right) + an$$

$$= \frac{c}{n} \left(\frac{3n^2}{4} + \frac{n}{2} - 2 \right) + an$$

$$= c \left(\frac{3n}{4} + \frac{1}{2} - \frac{2}{n} \right) + an$$

$$\leq \frac{3cn}{4} + \frac{c}{2} + an$$

$$= cn - \left(\frac{cn}{4} - \frac{c}{2} - an \right) .$$

Outline

- Minimum and maximum
- Selection in expected linear time
- Selection in worst-case linear time

SELECT algorithm

- **Idea:** Guarantee a good split when the array is partitioned.
- The Select algorithm:
 - 1. Divide *n* elements into groups of 5 elements.
 - 2. Find median of each of the *n*/5 groups.
 - ϵ Run insertion sort on each group.
 - ϵ Then just pick the median from each group.
 - 3. Use SELECT recursively to find median *x* of the *n*/5 medians.
 - 4. Partition the *n* elements around *x*.
 - Let *x* be the *k*th element of the array after partitioning.
 - There are k –1 elements on the low side of the partition and n –k elements on the high side.

SELECT algorithm

- 5. Now there are three possibilities:
 - If i = k, then return x.
 - If i < k, then use SELECT recursively to find *i* th smallest element on the lowside.
 - If i > k, then use SELECT recursively to find (i-k)th smallest element on the high side.

- : The median of a group.
- \longrightarrow : From larger to smaller.
- : Elements in this region are greater than *x*.
- Elements in this region are samller than *x*.

Time complexity

- At least half of the medians are $\geq x$.
 - Precisely, at least [n/5]/2 medians $\ge x$.
- These group contributes 3 elements that are > x, except for 2 of the groups:
 - the group containing *x*, and
 - the group with < 5 elements.</p>
- The number of elements greater than x is at least:
 - ▶ 3 ([n/5]/2–2) ≥ 3n/10 6.
- Similarly, at least 3n/10 6 elements are less than x.
- Thus, SELECT is called recursively on $\leq 7n/10 + 6$ elements in step 5.

Time complexity

• The Select algorithm:

- 1. Divide n elements into groups of 5 elements. O(n)
- 2. Find median of each of the n/5 groups. O(n)
 - ϵ Run insertion sort on each group.
 - ϵ Then just pick the median from each group.
- 3. Use SELECT recursively to find median *x* of the *n*/5 medians. 7
 - *T*(*n*/5)

- **4.** Partition the *n* elements around *x*. *O*(*n*)
 - Let *x* be the *k*th element of the array after partitioning.
 - There are k 1 elements on the low side of the partition and n k elements on the high side.
- 5. Now there are three possibilities: T(7n/10 + 6)
 - $\in \quad \text{If } i = k, \text{ then return} x.$
 - If i < k, then use SELECT recursively to find i th smallest element on the low side.
 - If i > k, then use SELECT recursively to find (i-k)th smallest element on the high side.
- Time complexity: $T(n) \le T(n/5) + T(7n/10 + 6) + O(n)$.

Time complexity

Solve this recurrence by substitution:

- Assume $T(n) \leq cn$ for sufficiently large c.
- The function described by the O(n) term is bounded by an for all n > 0.
- Then, we have
 - $T(n) \leq c n/5 + c(7n/10+6) + an$
 - $\leq cn/5 + c + 7cn/10 + 6c + an$
 - = 9cn/10 + 7c + an
 - = cn + (-cn/10 + 7c + an)
- This last quantity is $\leq cn$ if we choose $c \geq 20a$.

$$-cn/10+7c+an \leq 0$$

 $cn/10-7c \geq an$ Notice: $(n/n-70) \leq 2$ for $n \geq 140$.
 $c(n-70) \geq 10an$

Conclusion

- Thus, the running time is linear because these algorithms do not sort;

- The linear-time behavior is not a result of assumptions about the input, as was the case for the sorting algorithms in Chapter 8.
- Sorting requires $\Omega(n \lg n)$ time in the comparison model, even on average, and thus the method of sorting and indexing presented in the introduction to this chapter is asymptotically inefficient.