
Sultan ALPAR

associate professor, IITU

s.alpar@iitu.edu.kz

Chapter 9

Medians and

Order Statistics

Outline

2

◗ Minimum andmaximum

◗ Selection in expected lineartime

◗ Selection in worst‐case lineartime

Order statistics

3

◗ The ith order statistic of a set of n elements is the ith smallest
element.

◗ The minimum is the first orderstatistic (i =1).

◗ The maximum is the nth order statistic (i = n).

◗ A median is the “halfway point” of the set.

◗ When n is odd, the median is unique, at i = (n + 1)/2.

◗ When n is even, there are two medians:

◗ The lower median: i = ⌊(n + 1)/2⌋

◗ The upper median: i = ⌈(n +1)/2⌉

◗ We mean lower median when we use the phrase “the median”.

The selectionproblem

4

◗ How can we find the ith order statistic of a set and what is the

running time?

◗ Input: A set A of n (distinct) number and a number i, with 1  i  n.

◗ Output: The element x  A that is larger than exactly i–1 other

elements of A.

◗ The selection problem can be solved inO(nlgn) time.

◗ Sort the numbers using an O(nlgn)‐time algorithm, suchas

heapsort or mergesort.

◗ Then return the ith element in the sorted array.

◗ Are there fasteralgorithms?

◗ An O(n)‐time algorithm would be presented in this chapter.

Finding minimum

5

◗ We can easily obtain an upper bound of n−1 comparisons for

finding the minimum of a set of n elements.

◗ Examine each element in turn and keep track of the smallest one.

◗ The algorithm is optimal, because each element, except the

minimum, must be compared to a smaller element at least once.

MINIMUM(A)

◗ The maximum can be found in exactly the same way by

replacing the > with < in the above algorithm.

3.

4.

5.

1. min  A[1]

2. for i  2 tolength[A]

do if min > A[i]

then min A[i]

return min

Simultaneous minimumand maximum

6

◗ Some applications need both the minimum and maximum.

◗ Find the minimum and maximum independently, using n –1

comparisons for each, for a total of 2n–2 comparisons.

◗ In fact, at most 3n/2comparisons are needed:

◗ Maintain the minimum and maximum of elements seen so far.

◗ Process elements inpairs.

◗ Compare the elements of a pair to each other.

◗ Then compare the larger element to the maximum so far, and

compare the smaller element to the minimum so far.

◗ This leads to only 3 comparisons for every 2 elements.

Simultaneous minimumand maximum

◗ An observation

◗ If we compare the elements of a pair to each other, the larger can’t

be the minimum and the smaller can’t be the maximum.

◗ So we just need to compare the larger to the current maximum and

the smaller to the currentminimum.

◗ It costs 3 comparisons for every 2 elements.

◗ The previous method costs 2 comparisons for each element.

2 5 9 7 4 1

2 7 1

5 9 4
larger elements:

compare to the currentmaximum

7

smaller elements:

compare to the currentminimum

Simultaneous minimumand maximum

8

◗ Setting up the initial values for the min and max depends on
whether n is odd oreven.

◗ If n is even, compare the first two elements and assign the larger

to max and the smaller to min.

◗ If n is odd, set both min and max to the first element.

◗ If n is even, # of comparisons =
3(n − 2)

+1 =
3n

− 2.
2 2

◗ If n is odd, # of comparisons =
3(n −1)

= 3⌊n/2 ⌋
2

◗ In either case, the # of comparisons is  3⌊n /2 ⌋

Outline

9

◗ Minimum andmaximum

◗ Selection in expected lineartime

◗ Selection in worst‐case lineartime

Selection in expected linear time

10

◗ In fact, selection of the ith smallest element of the array A can

be done in (n)time.

◗ We first present a randomized version in this section and then

present a deterministic version in the next section.

◗ The function RANDOMIZED‐SELECT:

◗ is a divide‐and‐conqueralgorithm,

◗ uses RANDOMIZED‐PARTITION from the quicksort algorithmin

Chapter 7,and

◗ recurses on one side of the partition only.

RANDOMIZED‐SELECT procedure

11

3.

1. RANDOMIZED‐SELECT(A, p, r, i)
2. if p = r

then return A[p]

q  RANDOMIZED‐PARTITION(A, p,r)

k  q −p + 1

4.

5.

6.

7.

8.

9.

10.

if i = k /* the pivot value is the answer */

then return A[q]

elseif i < k

then return RANDOMIZED‐SELECT(A, p, q −1, i)

else return RANDOMIZED‐SELECT(A, q, r, i −k)

i = k

RANDOMIZED‐SELECT procedure

q r

 A[q]  A[q]

p q ‐1

To find the ith order statistic in

A[p…q‐1]

k

p

q + 1 r

To find the (i–k)th order statistic in

A[q + 1…r]

12

i > ki < k

A[q] is theanswer

Algorithm analysis

13

◗ The worst case: always recurse on a subarray that is only 1

element smaller than the previoussubarray.

◗ T(n) = T(n – 1) +(n)

=(n2)

◗ The best case:always recurse on a subarray that has half of the

elements smaller than the previoussubarray.

◗ T(n) = T(n/2) +(n)

= (n) (Master Theorem, case3)

Algorithm analysis

◗ The averagecase:

◗ We will show that T(n) = (n).

◗ For 1  k  n, the probability that the subarray A[p ..q] has k
elements is 1/n.

◗ To obtain an upper bound, we assume that T(n) is monotonically

increasing and that the ith smallest element is always in the

larger subarray.

◗ So, we have

1

n

14

T(n) 
n


k=1

(T(max(k −1,n − k) +O(n)).

n−1

T(k) +O(n).
n k = ⌊n/2 ⌋


2

T(n)  
n


k=1

(T(max(k −1,n − k)))+O(n)
n

k=1

(T(max(k −1,n − k) +O(n)) =

Algorithm analysis

◗ Solve this recurrence

bysubstitution:

◗ AssumeT(n)  cn for

sufficiently large c.

◗ The function
described by the O(n)

term is bounded by
an for all n > 0.

◗ Thus, if we assume that

◗ T(n) = O(1) for

◗ n < 2c/(c ‐4a),

◗ we have T(n) = O(n).

15

Outline

16

◗ Minimum andmaximum

◗ Selection in expected lineartime

◗ Selection in worst‐case lineartime

SELECT algorithm

17

◗ Idea: Guarantee a good split when the array is partitioned.

◗ The SELECTalgorithm:

1. Divide n elements into groups of 5 elements.

2. Find median of each of then/5groups.

€ Run insertion sort on each group.

€ Then just pick the median from each group.

3. Use SELECT recursively to find median x of then/5 medians.

4. Partition the n elements aroundx.

◗ Let x be the kth element of the array after partitioning.

◗ There are k −1 elements on the low side of the partition and

n −k elements on the high side.

SELECT algorithm

x : Elements in this regionare
greater than x.

: Elements in this regionare
samller than x.

5. Now there are threepossibilities:

€ If i = k, then returnx.

€ If i < k, then use SELECT recursively to find ith smallest

element on the lowside.

€ If i > k, then use SELECT recursively to find (i−k)th smallest

element on the highside.

: The median of agroup.

: From larger to smaller.

18

Time complexity

◗ At least half of the medians are  x.

◗ Precisely, at least [n/5]/ 2medians x.

◗ These group contributes 3 elements that are > x, except for 2

of thegroups:

◗ the group containing x,and

◗ the group with < 5elements.

◗ The number of elements greater than x is at least:

◗ 3 ([n/5]/ 2−2)  3n/10 −6.

◗ Similarly, at least 3n/10 − 6 elements are less than x.

◗ Thus, SELECT is called recursively on  7n/10+ 6 elements

in step5.

Time complexity

20

◗ The SELECT algorithm:

1. Divide n elements into groups of 5 elements. O(n)

O(n)2. Find median of each of the n/5 groups.

€ Run insertion sort on each group.

€ Then just pick the median from each group.

3. Use SELECT recursively to find median x ofthe n/5medians.

4. Partition the n elements around x.O(n)
◗ Let x be the kth element of the array after partitioning.

◗ There are k −1 elements on the low side of the partition and
n −k elements on the high side.

5. Now there arethree possibilities: T(7n/10 + 6)
€ If i = k, then returnx.
€ If i < k, then use SELECT recursively to find i th smallest

element on the lowside.

€ If i > k, then use SELECT recursively to find (i− k)th smallest
element on the highside.

◗ Time complexity: T(n)  T(n/5) + T(7n/10 + 6) + O(n).

T(n/5)

Time complexity

◗ Solve this recurrence bysubstitution:

◗ AssumeT(n)  cn for sufficiently large c.

◗ The function described by the O(n) term is bounded by an for all n > 0.

◗ Then, we have

T (n)  c n/ 5+ c(7n /10 + 6) + an

 cn / 5+ c + 7cn /10 + 6c + an

= 9cn /10 + 7c + an

= cn + (−cn /10 + 7c + an)

◗ This last quantity is  cn if we choose c  20a.

10a(n /(n − 70))

− cn /10 + 7c + an  0

cn /10 − 7c  an

c(n − 70)  10an

c 

Notice: (n/n‐70) 2 for n 140.

21

Conclusion

- Thus, the running time is linear because these

algorithms do not sort;

- The linear-time behavior is not a result of assumptions

about the input, as was the case for the sorting

algorithms in Chapter 8.

- Sorting requires Ω(n lg n) time in the comparison model,

even on average, and thus the method of sorting and

indexing presented in the introduction to this chapter is

asymptotically inefficient.

	Slide 1
	Slide 2: Outline
	Slide 3: Order statistics
	Slide 4: The selection problem
	Slide 5: Finding minimum
	Slide 6: Simultaneous minimum and maximum
	Slide 7: Simultaneous minimum and maximum
	Slide 8: Simultaneous minimum and maximum
	Slide 9: Outline
	Slide 10: Selection in expected linear time
	Slide 11: RANDOMIZED‐SELECT procedure
	Slide 12: RANDOMIZED‐SELECT procedure
	Slide 13: Algorithm analysis
	Slide 14: Algorithm analysis
	Slide 15: Algorithm analysis
	Slide 16: Outline
	Slide 17: SELECT algorithm
	Slide 18: SELECT algorithm
	Slide 19: Time complexity
	Slide 20: Time complexity
	Slide 21: Time complexity
	Slide 22: Conclusion

