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Lecture 8 Topics

• Lower bounds for sorting
• Counting sort
• Radix sort
• Bucket sort



Lower Bounds for Sorting

• All the sorts we have examined so far
work by “key comparisons”.  Elements
are put in the correct place by comparing
the values of the key used for sorting.

• Mergesort and Heapsort both have
running time Θ(n lg n)

• This is a lower bound on sorting by key
comparisons



Sorting by Key Comparisons

• Input sequence
<a1, a2, . . . an,> 

• Possible tests of ai between aj
<   >    ≤   ≥    =

• If assume unique elements, 
– test for equality is unnecessary (=) 
– <   >    ≤   ≥ all yield the same information 

about the relative order of ai and aj

• So, use only ai <= aj



Decision Tree Model

• We can view a comparison sort abstractly by 
using a decision tree.  

• The decision tree represents all possible 
comparisons made when sorting a list using a 
particular sorting algorithm

• Control, data movement, and other aspects of 
the algorithm are ignored

• Assume: 
– All elements are distinct.
– All comparisons are of the form ai ≤ aj
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Decision Tree for Insertion Sort (n = 3)

a1 : a2 means: “compare a1 and a2”

< a2, a1,a3 > means: a2 ≤ a1 ≤ a3



Lower Bounds for Comparison Sorts



Permutations of n elements
• There are n! permutations of n elements
• That means that the decision tree which 

results in all possible permutations of 
elements must have n! leaves

• The longest path from the root to a leaf 
represents the worst case performance of 
the algorithm

• So the worst case performance is the 
height of the decision tree



Theorem 8.a
Any decision tree that sorts n elements has 
height Ω (n lg n).

Proof:  
Consider a decision tree of height h with l leaves that 

sorts n elements.
There are n! permutations of n elements.
The tree must have at least n! leaves since each 

permutation of input must be a leaf. 
A binary tree of height h has no more than 2h leaves.
Therefore the decision tree has no more than 2h leaves.  
Thus:  n! ≤ l ≤ 2h



Therefore:       n! ≤ 2h

Take the logarithm of both sides:
lg( n! ) ≤ h , or, equivalently, h ≥ lg( n! )

Using Stirling’s approximation of n! we have:
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Lower Bound for Worst Case

Theorem 8.1:
Any comparison sort algorithm requires 
Ω(n lg n) comparisons in the worst case.



Lower Bound for Worst Case 

Proof:
By the previous theorem we know that any 
decision tree that sorts n elements has 
height Ω (n lg n).  Since the decision tree 
explicitly models the comparison process, 
no comparison sort algorithm can guarantee 
any fewer than Ω(n lg n) comparisons in the 
worst case.



Corollary:
Heapsort and merge sort are 
asymptotically optimal comparison sorts.

Proof:
The O(n lg n) upper bounds on the 
running times for heapsort and merge 
sort match the Ω(n lg n) worst-case 
lower bound from the theorem.

Lower Bound for Worst Case



Counting Sort
• Assumes each of the n input elements is an 

integer in the range 0 to k, for some integer k
• For each element x, determine the number of 

values  ≤ x.
• Requires three arrays

– An input array A[1..n]
– An array B[1..n] for the sorted output
– An array C[0..k] for counting the number of 

times each element occurs (temporary 
working storage)



Counting Sort 
COUNTING-SORT (A, B, k)
1 for i ← 0 to k do
2 C[i] ← 0
3 for j ← 1 to length[A] do
4 C[A[j]] ← C[A[j]] + 1
5 // C[i] now contains the # of elements = to i.
6 for i ← 1 to k do
7 C[i] ← C[i] + C[i-1]
8 //C[i] now contains the # of elements ≤ to i.
9 for j ← length[A] downto 1 do
10 B[C[A[j]]] ← A[j]
11 C[A[j]] ← C[A[j]] - 1



Counting Sort 



Complexity of Counting Sort
COUNTING-SORT (A, B, k)
1  for i ← 0 to k do Θ(k)

2     C[i] ← 0 Θ(1)

3  for j ← 1 to length[A] do Θ(n)

4     C[A[j]] ← C[A[j]] + 1 Θ(1)
5  // comment.
6  for i ← 1 to k do Θ(n)

7     C[i] ← C[i] + C[i-1] Θ(1)
8  //comment
9  for j ← length[A] downto 1 do Θ(n)

10     B[C[A[j]]] ← A[j] Θ(1)

11     C[A[j]] ← C[A[j]] – 1 Θ(1)



Complexity of Counting Sort

Lines 1-2 Θ(k)
Lines 3-4 Θ(n)
Lines 6-7 Θ(k)
Lines 9-11 Θ(n)

Total Θ(n+k)



Counting Sort

• Beats the lower bound of Ω(n lg n) because it 
is not a comparison sort

• Makes assumptions about the input data
• Is a stable sort: numbers with the same value 

appear in the output array in the same order as 
they do in the input array



Radix Sort

Radix sort assumes that each element in an array A with 
n elements consists of a number with d digits, 
where digit 1 is the lowest-order digit and digit d is 
the highest-order digit.



Radix Sort

RADIX-SORT (A, d)
1 for i ← 1 to d do 
2 use a stable sort to sort array 

A on digit i



Radix Sort



Radix Sort

One method of implementing the radix sort involves the 
use of bins, or auxiliary arrays.  We will need a 
number of  bins equal to the base (or radix) of our 
numbering system.  For decimal (base 10) numbers 
we will need 10 extra bins one for each of the 
numbers 0 through 9.

To implement radix sort, imagine the array is a deck of 
cards with numbers on them. 



Radix Sort

Dealing from the bottom of the deck, take each card, 
look at the digit in its 1’s column, and put it face-up 
into the appropriate bin (0 through 9).

Without disturbing the order of the cards within a bin, 
pick up the cards in the 0’s bin, then pick up the 
cards in the 1’s bin and put them on top of the cards 
you are already holding, then do the same with the 
2’s bin, etc., finishing with the 9’s bin.

Repeat this process for the 10’s column, the 100’s 
column, etc.

Your deck is now sorted from bottom to top. 



Radix Sort

What do we do if we have some numbers with 
more digits than others?

Just add (or pretend to add) extra zeros on the 
left so that all numbers have the same 
number of digits.

So 307 becomes 307

51 051

4 004



Radix Sort

Will this work with real numbers?
Yes.  You will have to pad both the integer part 

and the decimal part with zeros so that all of 
the numbers have the same number of digits 
in the integer part and all numbers have the 
same number of digits in the decimal part.
002.000
123.456
003.142
027.200



Radix Sort

What is the running time of this sort?  
If d is the number of digits in the number with the 

greatest number of digits, then the running 
time is O( d * n), or just O(n).

Proof:
We have to go through the deck d times.  We have 

n cards and we have to handle each card once 
each time we go through the deck.  So the 
total amount of work involved is O(d * n).  
For large values of n, n is the dominant term.



Radix Sort

How much space does radix sort use?
It depends on how line 2 of the algorithm is 

implemented.  If we use bins, as in our 
example, the sort is very inefficient in its use of 
space.  

The worst case is if we have an array of n identical 
numbers (e.g., 9876543210).  Then we will 
need 10 bins of size n.

In the best case, we still need 10 bins each of size 
n/10. 



Bucket Sort

Bucket sort also makes an assumption about the 
elements it is sorting.  It assumes that the 
elements are generated by a random process 
that distributes the elements uniformly over the 
interval [0,1).

Bucket sort works by dividing the interval [0,1) 
into n equal-sized subintervals (or buckets), 
and then dealing the n input numbers into the 
appropriate buckets.



Bucket Sort

Each bucket will probably end up with only 1 or 
two elements in it - a few elements at most, we 
expect.  

We can use any old sort, even Insertion sort, to sort 
these items in the buckets.  

Then we recombine the elements in the buckets 
(subintervals) back into a single array.



Bucket Sort
BUCKET-SORT(A)
1 n ← length[A]
2 for i ← 1 to n do
3 insert A[i] into list B[nA[i]]
4 for i ← 0 to n-1 do
5 sort list B[i] with insertion sort
6 concatenate lists B[0], B[1], …, B[n-

1] together in order



Bucket Sort
Given array A = <.49, .37, .26, .81, .65>, let’s see 
how BucketSort will work.

First, create n buckets.  In this case, n = 5.

.80 - .99

.60 - .79

.40 - .59

.20 - .39

0.0 - .19

Each of the buckets will 
represent 1/n of the interval 
[0,1).



Bucket Sort
Now take array A = <.49, .37, .26, .81, .65> and 
distritbute its elements into the buckets. 

.80 - .99

.60 - .79

.40 - .59

.20 - .39

0.0 - .19

.49

.37 .26

.81

.65

/



Bucket Sort
Now sort each bucket as needed.  Here, only one 
bucket will require sorting, and it has only two 
elements in it, so we can use any old sort.

.80 - .99

.60 - .79

.40 - .59

.20 - .39

0.0 - .19

.49

.26 .37

.81

.65

/



Bucket Sort
Finally, concatenate the buckets together to create 
the sorted array:

<.26, .37., .49, .65, .81>

.80 - .99

.60 - .79

.40 - .59

.20 - .39

0.0 - .19

.49

.26 .37

.81

.65

/



Bucket Sort



Analysis of Bucket sort

The only line of the Bucket sort algorithms 
that should bother us is line 5, where we 
sort each bucket with Insertion sort; won’t 
that make the whole sort O(n2)?

Well, no.  If n = 10,000 and the maximum 
number of items in any bucket is, say, 3, 
then line 3 will cost us at most 9 each time 
we hit it.  If all buckets have 3 items, our 
cost will still be only O(9*n) = O(n).



Analysis of Bucket sort

Remember that Bucket sort assumes that the 
elements of the array to be sorted are 
generated by a random process that 
distributes the elements uniformly over the 
interval [0,1).

If this truly is the case, Bucket sort will run 
O(n).

If our assumption is false, all bets are off!



Conclusion

We can sort in O(n) time if and only if we 
know something about the nature of the 
items we are sorting that enables us to use 
a specialized algorithm.

But, under normal circumstances, O(n lg n) is 
a provable lower bound on sorting.



A final word about sorts …

Sorting is one of the central problems of 
computer science.  Many other sorting 
techniques have been developed, including:

Pancake sort
Bead sort
Pigeonhole sort
“Perfect hashing” sort
. . .
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