
Lecture 8
Sorting in Linear Time

Sultan ALPAR
associate professor, IITU

s.alpar@iitu.edu.kz

Lecture 8 Topics

• Lower bounds for sorting
• Counting sort
• Radix sort
• Bucket sort

Lower Bounds for Sorting

• All the sorts we have examined so far
work by “key comparisons”. Elements
are put in the correct place by comparing
the values of the key used for sorting.

• Mergesort and Heapsort both have
running time Θ(n lg n)

• This is a lower bound on sorting by key
comparisons

Sorting by Key Comparisons

• Input sequence
<a1, a2, . . . an,>

• Possible tests of ai between aj
< > ≤ ≥ =

• If assume unique elements,
– test for equality is unnecessary (=)
– < > ≤ ≥ all yield the same information

about the relative order of ai and aj

• So, use only ai <= aj

Decision Tree Model

• We can view a comparison sort abstractly by
using a decision tree.

• The decision tree represents all possible
comparisons made when sorting a list using a
particular sorting algorithm

• Control, data movement, and other aspects of
the algorithm are ignored

• Assume:
– All elements are distinct.
– All comparisons are of the form ai ≤ aj

a1 : a2

≤ >

a2 : a3 a1 : a3

a1 : a3 a2 : a3
< a1, a2,a3 >

< a1, a3,a2 >

< a2, a1,a3 >

< a3, a1,a2 > < a3, a2,a1 >< a2, a3,a1>

≤

≤ ≤

≤ >

>

>

>

Decision Tree for Insertion Sort (n = 3)

a1 : a2 means: “compare a1 and a2”

< a2, a1,a3 > means: a2 ≤ a1 ≤ a3

Lower Bounds for Comparison Sorts

Permutations of n elements
• There are n! permutations of n elements
• That means that the decision tree which

results in all possible permutations of
elements must have n! leaves

• The longest path from the root to a leaf
represents the worst case performance of
the algorithm

• So the worst case performance is the
height of the decision tree

Theorem 8.a
Any decision tree that sorts n elements has
height Ω (n lg n).

Proof:
Consider a decision tree of height h with l leaves that

sorts n elements.
There are n! permutations of n elements.
The tree must have at least n! leaves since each

permutation of input must be a leaf.
A binary tree of height h has no more than 2h leaves.
Therefore the decision tree has no more than 2h leaves.
Thus: n! ≤ l ≤ 2h

Therefore: n! ≤ 2h

Take the logarithm of both sides:
lg(n!) ≤ h , or, equivalently, h ≥ lg(n!)

Using Stirling’s approximation of n! we have:

n!= 2πn n
e

n
1 + Θ

1
n

Since 2πn and 1 + Θ
1
n

 are > 1,

n!> n
e

n

)lg(
lg-lg =

lg :have we

 ! and)!lg(Since

nnh
ennnh
e
nh

e
nnnh

n

n

Ω=

≥

>≥

Lower Bound for Worst Case

Theorem 8.1:
Any comparison sort algorithm requires
Ω(n lg n) comparisons in the worst case.

Lower Bound for Worst Case

Proof:
By the previous theorem we know that any
decision tree that sorts n elements has
height Ω (n lg n). Since the decision tree
explicitly models the comparison process,
no comparison sort algorithm can guarantee
any fewer than Ω(n lg n) comparisons in the
worst case.

Corollary:
Heapsort and merge sort are
asymptotically optimal comparison sorts.

Proof:
The O(n lg n) upper bounds on the
running times for heapsort and merge
sort match the Ω(n lg n) worst-case
lower bound from the theorem.

Lower Bound for Worst Case

Counting Sort
• Assumes each of the n input elements is an

integer in the range 0 to k, for some integer k
• For each element x, determine the number of

values ≤ x.
• Requires three arrays

– An input array A[1..n]
– An array B[1..n] for the sorted output
– An array C[0..k] for counting the number of

times each element occurs (temporary
working storage)

Counting Sort
COUNTING-SORT (A, B, k)
1 for i ← 0 to k do
2 C[i] ← 0
3 for j ← 1 to length[A] do
4 C[A[j]] ← C[A[j]] + 1
5 // C[i] now contains the # of elements = to i.
6 for i ← 1 to k do
7 C[i] ← C[i] + C[i-1]
8 //C[i] now contains the # of elements ≤ to i.
9 for j ← length[A] downto 1 do
10 B[C[A[j]]] ← A[j]
11 C[A[j]] ← C[A[j]] - 1

Counting Sort

Complexity of Counting Sort
COUNTING-SORT (A, B, k)
1 for i ← 0 to k do Θ(k)

2 C[i] ← 0 Θ(1)

3 for j ← 1 to length[A] do Θ(n)

4 C[A[j]] ← C[A[j]] + 1 Θ(1)
5 // comment.
6 for i ← 1 to k do Θ(n)

7 C[i] ← C[i] + C[i-1] Θ(1)
8 //comment
9 for j ← length[A] downto 1 do Θ(n)

10 B[C[A[j]]] ← A[j] Θ(1)

11 C[A[j]] ← C[A[j]] – 1 Θ(1)

Complexity of Counting Sort

Lines 1-2 Θ(k)
Lines 3-4 Θ(n)
Lines 6-7 Θ(k)
Lines 9-11 Θ(n)

Total Θ(n+k)

Counting Sort

• Beats the lower bound of Ω(n lg n) because it
is not a comparison sort

• Makes assumptions about the input data
• Is a stable sort: numbers with the same value

appear in the output array in the same order as
they do in the input array

Radix Sort

Radix sort assumes that each element in an array A with
n elements consists of a number with d digits,
where digit 1 is the lowest-order digit and digit d is
the highest-order digit.

Radix Sort

RADIX-SORT (A, d)
1 for i ← 1 to d do
2 use a stable sort to sort array

A on digit i

Radix Sort

Radix Sort

One method of implementing the radix sort involves the
use of bins, or auxiliary arrays. We will need a
number of bins equal to the base (or radix) of our
numbering system. For decimal (base 10) numbers
we will need 10 extra bins one for each of the
numbers 0 through 9.

To implement radix sort, imagine the array is a deck of
cards with numbers on them.

Radix Sort

Dealing from the bottom of the deck, take each card,
look at the digit in its 1’s column, and put it face-up
into the appropriate bin (0 through 9).

Without disturbing the order of the cards within a bin,
pick up the cards in the 0’s bin, then pick up the
cards in the 1’s bin and put them on top of the cards
you are already holding, then do the same with the
2’s bin, etc., finishing with the 9’s bin.

Repeat this process for the 10’s column, the 100’s
column, etc.

Your deck is now sorted from bottom to top.

Radix Sort

What do we do if we have some numbers with
more digits than others?

Just add (or pretend to add) extra zeros on the
left so that all numbers have the same
number of digits.

So 307 becomes 307

51 051

4 004

Radix Sort

Will this work with real numbers?
Yes. You will have to pad both the integer part

and the decimal part with zeros so that all of
the numbers have the same number of digits
in the integer part and all numbers have the
same number of digits in the decimal part.
002.000
123.456
003.142
027.200

Radix Sort

What is the running time of this sort?
If d is the number of digits in the number with the

greatest number of digits, then the running
time is O(d * n), or just O(n).

Proof:
We have to go through the deck d times. We have

n cards and we have to handle each card once
each time we go through the deck. So the
total amount of work involved is O(d * n).
For large values of n, n is the dominant term.

Radix Sort

How much space does radix sort use?
It depends on how line 2 of the algorithm is

implemented. If we use bins, as in our
example, the sort is very inefficient in its use of
space.

The worst case is if we have an array of n identical
numbers (e.g., 9876543210). Then we will
need 10 bins of size n.

In the best case, we still need 10 bins each of size
n/10.

Bucket Sort

Bucket sort also makes an assumption about the
elements it is sorting. It assumes that the
elements are generated by a random process
that distributes the elements uniformly over the
interval [0,1).

Bucket sort works by dividing the interval [0,1)
into n equal-sized subintervals (or buckets),
and then dealing the n input numbers into the
appropriate buckets.

Bucket Sort

Each bucket will probably end up with only 1 or
two elements in it - a few elements at most, we
expect.

We can use any old sort, even Insertion sort, to sort
these items in the buckets.

Then we recombine the elements in the buckets
(subintervals) back into a single array.

Bucket Sort
BUCKET-SORT(A)
1 n ← length[A]
2 for i ← 1 to n do
3 insert A[i] into list B[nA[i]]
4 for i ← 0 to n-1 do
5 sort list B[i] with insertion sort
6 concatenate lists B[0], B[1], …, B[n-

1] together in order

Bucket Sort
Given array A = <.49, .37, .26, .81, .65>, let’s see
how BucketSort will work.

First, create n buckets. In this case, n = 5.

.80 - .99

.60 - .79

.40 - .59

.20 - .39

0.0 - .19

Each of the buckets will
represent 1/n of the interval
[0,1).

Bucket Sort
Now take array A = <.49, .37, .26, .81, .65> and
distritbute its elements into the buckets.

.80 - .99

.60 - .79

.40 - .59

.20 - .39

0.0 - .19

.49

.37 .26

.81

.65

/

Bucket Sort
Now sort each bucket as needed. Here, only one
bucket will require sorting, and it has only two
elements in it, so we can use any old sort.

.80 - .99

.60 - .79

.40 - .59

.20 - .39

0.0 - .19

.49

.26 .37

.81

.65

/

Bucket Sort
Finally, concatenate the buckets together to create
the sorted array:

<.26, .37., .49, .65, .81>

.80 - .99

.60 - .79

.40 - .59

.20 - .39

0.0 - .19

.49

.26 .37

.81

.65

/

Bucket Sort

Analysis of Bucket sort

The only line of the Bucket sort algorithms
that should bother us is line 5, where we
sort each bucket with Insertion sort; won’t
that make the whole sort O(n2)?

Well, no. If n = 10,000 and the maximum
number of items in any bucket is, say, 3,
then line 3 will cost us at most 9 each time
we hit it. If all buckets have 3 items, our
cost will still be only O(9*n) = O(n).

Analysis of Bucket sort

Remember that Bucket sort assumes that the
elements of the array to be sorted are
generated by a random process that
distributes the elements uniformly over the
interval [0,1).

If this truly is the case, Bucket sort will run
O(n).

If our assumption is false, all bets are off!

Conclusion

We can sort in O(n) time if and only if we
know something about the nature of the
items we are sorting that enables us to use
a specialized algorithm.

But, under normal circumstances, O(n lg n) is
a provable lower bound on sorting.

A final word about sorts …

Sorting is one of the central problems of
computer science. Many other sorting
techniques have been developed, including:

Pancake sort
Bead sort
Pigeonhole sort
“Perfect hashing” sort
. . .

	Chapter 8�Sorting in Linear Time
	Chapter 8 Topics
	Lower Bounds for Sorting
	Sorting by Key Comparisons
	Decision Tree Model
	Slide Number 6
	Lower Bounds for Comparison Sorts
	Permutations of n elements
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Lower Bound for Worst Case
	Lower Bound for Worst Case
	Slide Number 14
	Counting Sort
	Counting Sort
	Counting Sort
	Complexity of Counting Sort
	Complexity of Counting Sort
	Counting Sort
	Radix Sort
	Radix Sort
	Radix Sort
	Radix Sort
	Radix Sort
	Radix Sort
	Radix Sort
	Radix Sort
	Radix Sort
	Bucket Sort
	Bucket Sort
	Bucket Sort
	Bucket Sort
	Bucket Sort
	Bucket Sort
	Bucket Sort
	Bucket Sort
	Analysis of Bucket sort
	Analysis of Bucket sort
	Conclusion
	A final word about sorts …

