
Lecture 7 
Quicksort

Sultan ALPAR
associate professor, IITU

s.alpar@iitu.edu.kz



Lecture 7 Topics

• What is quicksort?
• How does it work?
• Performance of quicksort
• Randomized version of quicksort



Description of Quicksort
• Quicksort is another divide-and-conquer

algorithm.
• Basically, what we do is divide the array into

two subarrays, so that all the values on the left
are smaller than the values on the right.

• We repeat this process until our subarrays have
only 1 element in them.

• When we return from the series of recursive
calls, our array is sorted.



Description of Quicksort

• Divide: Partition A[p..r] into two (possibly 
empty) subarrays A[p..q-1] and A[q+1 .. r] such 
each element of A[p..q-1] ≤ A[q] and A[q] ≤ 
each element of A[q+1..r]. Compute the index q 
as part of this partitioning procedure.

• Conquer: Sort the two subarrays by recursive 
calls to quicksort.

• Combine: Since the subarrays are sorted in 
place, no work is needed to combine them: 
A[p..r] is now sorted.



QUICKSORT(A,p,r)
1  if p < r
2    then q ← PARTITION(A,p,r)
3         QUICKSORT(A,p,q-1)
4         QUICKSORT(A,q+1,r)

Initial call:       
QUICKSORT(A,1, length[A])

The Quicksort Algorithm



PARTITION(A,p,r)
1  x ← A[r]
2  i ← p - 1
3  for j ← p to r-1
4    do if A[j] ≤ x
5      then i ← i + 1
6           exchange A[i] ↔ A[j]
7  exchange A[i+1] ↔ A[r]
8  return i+1

The Partition Algorithm



PARTITION(A,p,r)
x ← A[r]
i ← p - 1
for j ← p to r-1
do if A[j] ≤ x
then i ← i + 1
exchange A[i] ↔ A[j]

exchange A[i+1] ↔ A[r]
return i+1



 

 unrestricted  = x > x 

i 
x 
r j p 

Regions of Subarray Maintained 
by PARTITION

Each value in A[p..i] ≤ x.
Each value in A[i+1..j-1] > x.
A[r] = x.
A[j..r-1] can take on any values.



Loop Invariant for Partition

We can prove the correctness of the Partition 
algorithm by an analysis of its loop invariant 
conditions:

At the beginning of each iteration of the loop 
in lines 3-6, for any array index k,

1. if p ≤ k ≤ i, then A[k] ≤ x.
2. if i +1 ≤ k ≤ j-1, then A[k] > x.
3. if k = r, then A[k] = x.



Loop Invariant Correctness

Initialization: 
• Prior to the first iteration of the loop, i = p - 1, and    

j = p.  There are no values between p and i, and no 
values between i+1 and j-1, so the first two 
conditions of the loop invariant are trivially 
satisfied.  The assignment in line 1 satisfies the third 
condition.



Loop Invariant Correctness
Maintenance: 
• There are two cases to consider depending on the 

outcome of the test in line 4:  
• When A[j] > x, the only action in the loop is to 

increment j.  After j is incremented, condition 2 holds 
for all A[j-1] and all other entries remain unchanged.  

• When A[j] ≤ x, i is incremented, A[i] and A[j] are 
swapped, and then j is incremented.  Because of the 
swap, we now have that A[i] ≤ x, and condition 1 is 
satisfied.  Similarly, we also have that A[j-1]>x, since 
the item that was swapped into A[j-1] is, by the loop 
invariant, greater than x.





Loop Invariant Correctness
Termination: 

At termination, j = r. Therefore, every entry in 
the array is in one of the three sets described 
by the invariant, and we have partitioned the 
values in the array into three sets: 

those less than or equal to x, 
those greater than x, and 
a singleton set containing x.



Performance of Quicksort

• Depends on whether the partitioning is 
balanced or unbalanced:
– Balance of partition depends on location of 

pivot
– If balanced, runs as fast as Merge sort
– If unbalanced, runs as slowly as Insertion 

sort



Worst/Best case partitioning

– Worst case:
• One partition contains n – 1 elements
• The other partition contains 1 element

– Best case:
• Both partitions are of equal size



Worst case partitioning
n

n-1

n-2

n-3

. . .

2

1

−−−−−−−−−−−−−−−−−−−−−−−−

Total of Θ(n2)

n

n

1 n-2

1 n-1

1 n-3

1 1

2



Worst Case Performance
Assume we have a maximally unbalanced 
partition at each step, splitting off just 1 element 
from the rest each time.  This means we will 
have to call Partition n-1 times.
The cost of Partition is:   Θ(n)
So the recurrence for Quicksort is:

T(n) = T(n-1) + T(0) + Θ(n)
= T(n-1) + Θ(n)



)(n=        

k=        

(k)=        
(1)+   ... + 2)-(n + 1)-(n + (n) =        

1)-T(n  Θ(n) = T(n)

2

n

1k

n

1=k

Θ

∑Θ

∑Θ

ΘΘΘΘ
+















=

Worst Case Performance
We can solve the recurrence by iteration:



Best Case

Best case: Each time the partitioning is 
done, it splits the array into two regions of 
equal size.  After each call to Partition, 
each subarray contains n/2 of the 
elements from the previous call.  If we 
halve the remaining elements each 
time, we will have to call Partition 
log2n times.



Best Case Performance
Best case: Call Partition, which splits the array 
into two equal-size subarrays.  For each of the 2 
subarrays, call Partition, which splits ...

Recurrence for Quicksort:
T(n) ≤ 2T(n/2) + Θ(n)

This matches Master Method case 2.  Solving the 
recurrence we get:

T(n) = O(n lg n)



Average Case

• Average case analysis is complex and difficult.
• However, we can observe that average-case 

performance is much closer to best-case than 
worst case.

• Suppose split is always 9-to-1
• Recurrence:

T(n) ≤ T(9n/10) + T(n/10) + Θ(n)
= T(9n/10) + T(n/10) + cn
= log10/9n * n = O(n lg n)



Average Case Analysis



Average Case Analysis

• What if we have a 99-1 split?

• We still have a running time of O(n lg n)

• Any split of constant proportionality yields 
a recursion tree of depth Θ(lg n), where the 
cost at each level is O(n).

• So whenever the split is of constant 
proportionality, Quicksort performs on the 
order of O(n lg n).



Average Case

• Best case:
2T(n/2) + Θ(n)

• Average case example:
T(9n/10) + T(n/10) + cn

• Worst case:
T(n-1) + Θ(n)



Randomized Version of Quicksort
• When an algorithm has an average case 

performance and worst case performance that 
are very different, we can try to minimize the 
odds of encountering the worst case.

• We can:
– Randomize the input
– Randomize the algorithm



Randomized Version of Quicksort
• Randomizing the input

With a given set of input numbers, there are 
very few permutations that produce the worst-
case performance in Quicksort.
We can randomly permute the numbers in a n-
element array in O(n) time.
For Quicksort, add an initial step to randomize 
the input array.
Running time is now independent of input 
ordering.



Randomized Version of Quicksort
• Randomizing the algorithm:

In standard Quicksort, the worst case is 
encountered when we choose a bad pivot.
If the input array is already sorted (or inverse 
sorted), we will always pick a bad pivot.
But if we pick our pivot randomly, we will rarely 
get a bad pivot.
So, randomly choose a pivot element in A[p..r].
Running time is now independent of input 
ordering.



Randomized Partition

RANDOMIZED-PARTITION (A, p, r)
1 i ← RANDOM (p, r)
2 exchange A[r] ↔ A[i]
3 return PARTITION (A, p, r)



Randomized Quicksort
RANDOMIZED-QUICKSORT (A, p, r)
1  if p < r
2  then q ← RANDOMIZED-PARTITION (A, p, r)
3       RANDOMIZED-QUICKSORT (A, p, q-1)
4       RANDOMIZED-QUICKSORT (A, q+1, r)



Conclusion

Quicksort runs O(n lg n) in the best and 
average case, but O(n2) in the worst case.

Worst case scenarios for Quicksort occur 
when the array is already sorted, in either 
ascending or descending order.

We can increase the probability of obtaining 
average-case performance from Quicksort 
by using Randomized-partition.


	Chapter 7�Quicksort
	Chapter 7 Topics
	Description of Quicksort
	Description of Quicksort
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Regions of Subarray Maintained by PARTITION
	Loop Invariant for Partition
	Loop Invariant Correctness
	Loop Invariant Correctness
	Slide Number 12
	Loop Invariant Correctness
	Performance of Quicksort
	Worst/Best case partitioning
	Worst case partitioning
	Worst Case Performance
	Worst Case Performance
	Best Case
	Best Case Performance
	Average Case
	Average Case Analysis
	Average Case Analysis
	Average Case
	Randomized Version of Quicksort
	Randomized Version of Quicksort
	Randomized Version of Quicksort
	Randomized Partition
	Randomized Quicksort
	Conclusion

