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Lecture 6 Topics

• Heaps
• Maintaining the heap property
• Building a heap
• The heapsort algorithm
• Priority queues



Heapsort

• Running time of heapsort is O(n log2n)
• It sorts in place
• It uses a data structure called a heap
• The heap data structure is also used to

implement a priority queue efficiently



Full and Complete Binary Trees

A full binary tree is a binary tree in which 
each node is either a leaf node or has degree 
2 (i.e., has exactly 2 children).
A complete binary tree is a full binary tree 
in which all leaves have the same depth.
A nearly complete binary tree is completely 
filled on all levels except possibly the lowest, 
which is filled from the left up to a point.



Examples

Full binary tree: Complete binary tree:
 



Representation of 
Nearly Complete Binary Tree

A nearly complete binary tree may be 
represented as an array (i.e., no pointers):
Number the nodes, beginning with the root 
node and moving from level to level, left to 
right within a level.
The number assigned to a node is its index 
in the array.



Additional Properties of 
Nearly Complete Binary Trees

• The root of the tree is A[1].
• If a node has index i, we can easily 

compute the indices of its:
– parent i/2
– left child 2i
– right child 2i + 1
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Heap

• Implemented as an array object, A[ ]
• Array A that implements the heap has two 
attributes

–length(A)
–heap-size(A)



Heap
A binary tree with n nodes and of height h is 
almost complete iff its nodes correspond to the 
nodes which are numbered 1 to n in the complete 
binary tree of height h.

A heap is an almost complete binary tree that 
satisfies the heap property:

max-heap: For every node i other than the root:
A[Parent(i)] ≥ A[i]

min-heap: For every node i other than the root:
A[Parent(i)] ≤ A[i]



Max-Heap

A max-heap is an almost complete binary tree that 
satisfies the heap property:

For every node i other than the root,
A[PARENT(i)] ≥ A[i]

What does this mean?
• the value of a node is at most the value of its 
parent
• the largest element in the heap is stored in the root
• subtrees rooted at a node contain smaller values 
than the node itself
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Height of a node in a heap

The height of a node in a heap is the 
number of edges on the longest simple 
downward path from the node to a leaf.

The height of a heap is the height of its 
root.

Since a heap of n elements is based on a 
complete binary tree, its height is Θ(lg n).



Heaps have 5 basic procedures

• HEAPIFY:  maintains the heap property
• BUILD-HEAP:  builds a heap from an 
unordered array
• HEAPSORT:  sorts an array in place
• EXTRACT-MAX: selects max element
• INSERT: inserts a new element

We’ll work with MAX heaps



MAX-HEAPIFY(A,i)

• Goal is to put the ith element in the correct 
place in a portion of the array that 
“almost” has the heap property.

• The only element with index of i or 
greater that is out of place is A[i].

• Assume that left and right subtrees of A[i] 
have the heap property.

• “Sift” A[i] down to the right position.
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Array element 2, the 
“4”, is out of place.
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MAX-HEAPIFY
MAX-HEAPIFY(A, i)
1 l ← LEFT(i)
2 r ← RIGHT(i)
3 if l ≤ heap-size[A] and A[l] > A[i]
4 then largest ← l
5 else largest ← i
6 if r ≤ heap-size[A] and A[r] > A[largest]
7 then largest ← r
8 if largest ≠ i
9 then exchange A[i] ↔ A[largest]
10 MAX-HEAPIFY(A, largest)



Running time of MAX-HEAPIFY

• Run time of MAX-HEAPIFY(A,i)
– Look at lines 1 –9 
– Is there a loop?  No.
– Does the number of steps depend upon 

n?  No.
– So the running time so far is Θ(1)
– How about line 10?  We don’t know 

yet.



Running time of MAX-HEAPIFY

The recursive call to MAX-HEAPIFY in line 
10 implies a recurrence relation.

When we call MAX_HEAPIFY again, we 
already know that lines 1-9 cost Θ(1) 
steps.  

But we may need to call MAX-HEAPIFY on 
a subtree rooted at one of the children of 
the current node, so we have to add the 
cost of doing that.



Running time of MAX-HEAPIFY

How many nodes might be involved?
 In the case of a 

full binary tree, 
about half of the 
tree might be 
involved.



Running time of MAX-HEAPIFY

 In a complete binary 
tree with 15 nodes, 8 of 
those nodes are leaves 
at the bottom level.

If we perform MAX-
HEAPIFY on node i, 7 
of the 15 nodes will be 
involved – about ½ of 
the nodes.

i



Running time of MAX-HEAPIFY
What is the worst case?
When the last row of the tree is half full.
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Running time of MAX-HEAPIFY

Remember that, in a complete binary tree, more 
than half of the nodes in the entire tree are the 
leaf nodes on the bottom level of the tree.

But the only nodes involved in MAX-HEAPIFY 
are the descendants of A[i], which must be in 
A[i]’s half of the tree.

So worst case is when the last row of the tree is 
half full on the left side and A[i] is their 
ancestor.



Running time of MAX-HEAPIFY

The subtrees of the children of our current 
node have size at most 2n/3.

The running time of MAX_HEAPIFY can 
be described by the recurrence:
T(n) ≤ T(2n/3) + Θ(1)

This is Case 2 by the master method, so:
T(n) = O(lg n)



Running time of MAX-HEAPIFY

We could also describe the running time of 
MAX-HEAPIFY for a node of height h
as O(h).  (This is useful only if we know 
the height of a specific node.)



BUILD-MAX-HEAP

• Use MAX-HEAPIFY in a bottom-up 
manner to convert an array A[1..n] into a 
heap.

• Each leaf is initially a one-element heap. 
Elements A[n/2 + 1..n] are leaves.

• MAX-HEAPIFY is called on all interior 
nodes.



BUILD-MAX-HEAP

BUILD-MAX-HEAP(A)
1 heap-size[A] ← length[A]
2 for i ← floor(length[A]/2) downto 1 do
3 MAX-HEAPIFY(A, i)
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Running Time of BUILD-MAX-HEAP

• Simple upper bound:
– each call to MAX-HEAPIFY costs O(lg n)
– O(n) such calls
– running time at most O(n lg n)

• Previous bound is not tight:
– lots of the elements are leaves 
– most elements are near leaves (small height)



Tighter Bound for BUILD-MAX-HEAP

By substituting x = ½ in the formula for 
differentiating infinite geometric series, we have:
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Tighter Bound for BUILD-MAX-
HEAP (continued)

Thus the running time is bounded by:

Therefore, we can build a heap from an 
unordered array in linear time.
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Heapsort

• First build a heap.
• Then successively remove the biggest 

element from the heap and move it to the 
first position in the sorted array.

• The element currently in that position is 
then placed at the top of the heap and 
sifted to the proper position.



HEAPSORT

HEAPSORT(A)
1 BUILD-MAX-HEAP(A)
2 for i ← length[A] downto 2 do
3 exchange A[1] ↔ A[i]
4 heap-size[A] ← heap-size[A] – 1
5 MAX-HEAPIFY(A, 1)
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heap-size[A] ← heap-size[A] – 1
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for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)



Running time of Heapsort
HEAPSORT(A)
1 BUILD-MAX-HEAP(A)
2 for i ← length[A] downto 2 do
3 exchange A[1] ↔ A[i]
4 heap-size[A] ← heap-size[A] – 1
5 MAX-HEAPIFY(A, 1)

Is there a loop?  If so, how many times will it 
execute?  What is the cost of one iteration of the 
loop?



Running time of Heapsort
HEAPSORT(A)
1 BUILD-MAX-HEAP(A) O(n)
2 for i ← length[A] downto 2 do O(n-1)
3 exchange A[1] ↔ A[i] O(1)
4 heap-size[A] ← heap-size[A] – 1 O(1)
5 MAX-HEAPIFY(A, 1) O(lg n)

Total time is:
O(n) + O(n-1) * [ O(1) + O(1) + O(lg n) ]

which is approximately
O(n) + O(n lg n)

or just O(n lg n)



Running time of Heapsort

• BUILD-MAX-HEAP takes O(n).
• We have a loop.  Each of the n-1 calls to 

MAX-HEAPIFY takes O(lg n) time.
• Total time is O(n lg n).
• Will heap sort always take O(n lg n) time?  

Is there a best-case scenario?  Is there a 
worst-case scenario?  Why or why not?



Space requirements of Heapsort

• Heapsort uses an array as its data structure.
• Heapsort sorts “in place”.
• Any extra storage needed?
• Only a negligible amount – one extra 

storage location is needed as temporary 
storage when swapping two array 
elements.



Priority Queues

• A priority queue is a data structure for 
maintaining a set S of elements, each 
with an associated value called a key.

• Applications include 
– scheduling jobs on a shared computer 

(max-priority queue)
– event-driven simulators (min-priority 

queue)



Handles
• Elements of priority queue correspond to objects in 

application.
• We must be able to determine which application 

object corresponds to a given priority-queue 
element.

• We store a handle (pointer, integer, etc.) to the 
corresponding application object in each heap 
element.

• We also store a handle (array index) to the 
corresponding heap element in each application 
object.



Max-Priority Queue Operations

• INSERT(S,x): insert element x into set S
• MAXIMUM(S): return element of S with 

the largest key
• EXTRACT-MAX(S): remove and return 

element of S with the largest key
• INCREASE-KEY(S, x, k): increase value 

of x’s key to k, where k is at least as large 
as x’s current key value



Min-Priority Queue Operations

• INSERT(S,x): insert element x into set S
• MINIMUM(S): return element of S with 

the smallest key
• EXTRACT-MIN(S): remove and return 

element of S with the smallest key
• DECREASE-KEY(S, x, k): decrease 

value of x’s key to k, where k is at least as 
small as x’s current key value



Priority Queue Operations

• All operations can be done on a set of 
size n in O(lg n) time



HEAP-MAXIMUM

HEAP-MAXIMUM(A)
1 return A[1]

• Returns the item at the top of the heap
• Runs in Θ(1) time



HEAP-EXTRACT-MAX

HEAP-EXTRACT-MAX(A)

1  if heap-size[A] < 1

2     then error “heap underflow”

3  max ← A[1]

4  A[1] ← A[heap-size[A]]

5  heap-size[A] ← heap-size[A] - 1
6  MAX-HEAPIFY(A,1)

7  return max



Running time of HEAP-EXTRACT-MAX

HEAP-EXTRACT-MAX(A)

1  if heap-size[A] < 1 O(1)
2     then error “heap underflow” O(1)
3  max ← A[1] O(1)
4  A[1] ← A[heap-size[A]] O(1)
5  heap-size[A] ← heap-size[A] – 1 O(1)
6  MAX-HEAPIFY(A,1) O(lg n)
7  return max O(1)

Any loops?  No.  So just sum up the times: O(6) + O(lg n)
The dominant term is O(lg n).



HEAP-INCREASE-KEY

HEAP-INCREASE-KEY(A, i, key)

1  if key < A[i]

2     then error “new key is smaller 
than current key”

3  A[i] ← key
4  while i > 1 and A[PARENT(i)] < A[i] do

5 exchange A[i] ↔ A[PARENT(i)]

6 i ← PARENT(i)



Example of HEAP-INCREASE-KEY

14 10

8 7 9 3

2 4 1

16

i



Example of HEAP-INCREASE-
KEY (continued)
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Example of HEAP-INCREASE-
KEY (continued)
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Example of HEAP-INCREASE-
KEY (continued)
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Running time of HEAP-INCREASE-KEY
HEAP-INCREASE-KEY(A, i, key)

1  if key < A[i] O(1)

2     then error O(1)

“new key is smaller than current key”

3  A[i] ← key O(1)
4  while i > 1 and A[PARENT(i)] < A[i] do O(lg n)

5 exchange A[i] ↔ A[PARENT(i)] O(3)

6 i ← PARENT(i) O(1)

Any loops?  Yes.  How many times will the loop execute?  As many 
times as node i has ancestors, which = the depth of the tree.  The 
depth of a binary tree is O(lg n).  We do a constant amount of 
work in the loop.  Cost is: O(3) + O(4 lg n), or just O(lg n)



MAX-HEAP-INSERT

MAX-HEAP-INSERT(A,key)

1  heap-size[A] ← heap-size[A] + 1

2  A[heap-size] ← -∞
3  HEAP-INCREASE-KEY(A, heap-size[A], key)
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MAX-HEAP-INSERT

MAX-HEAP-INSERT(A,key)

1  heap-size[A] ← heap-size[A] + 1 O(1)

2  A[heap-size] ← -∞ O(1)
3  HEAP-INCREASE-KEY(A, heap-size[A], key) O(lg n)

Any loops?  No.
Add up the times: O(1) + O(1) + O(lg n) = O(2) + O(lg n)
Dominant term is O(lg n), so running time is just O(lg n).



Conclusion

We have seen:
•what a heap is
• how to build a heap
•how to use a heap for sorting
•how to analyze heapsort’s running time
•how to use a heap for priority queues
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