
Lecture 6
Heapsort

Sultan ALPAR
associate professor, IITU

s.alpar@iitu.edu.kz

Lecture 6 Topics

• Heaps
• Maintaining the heap property
• Building a heap
• The heapsort algorithm
• Priority queues

Heapsort

• Running time of heapsort is O(n log2n)
• It sorts in place
• It uses a data structure called a heap
• The heap data structure is also used to

implement a priority queue efficiently

Full and Complete Binary Trees

A full binary tree is a binary tree in which
each node is either a leaf node or has degree
2 (i.e., has exactly 2 children).
A complete binary tree is a full binary tree
in which all leaves have the same depth.
A nearly complete binary tree is completely
filled on all levels except possibly the lowest,
which is filled from the left up to a point.

Examples

Full binary tree: Complete binary tree:

Representation of
Nearly Complete Binary Tree

A nearly complete binary tree may be
represented as an array (i.e., no pointers):
Number the nodes, beginning with the root
node and moving from level to level, left to
right within a level.
The number assigned to a node is its index
in the array.

Additional Properties of
Nearly Complete Binary Trees

• The root of the tree is A[1].
• If a node has index i, we can easily

compute the indices of its:
– parent i/2
– left child 2i
– right child 2i + 1

Numbering

16

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

1

1
0

16 14 10 8 7 9 3 2 4 1Array:

Heap:

Heap

• Implemented as an array object, A[]
• Array A that implements the heap has two
attributes

–length(A)
–heap-size(A)

Heap
A binary tree with n nodes and of height h is
almost complete iff its nodes correspond to the
nodes which are numbered 1 to n in the complete
binary tree of height h.

A heap is an almost complete binary tree that
satisfies the heap property:

max-heap: For every node i other than the root:
A[Parent(i)] ≥ A[i]

min-heap: For every node i other than the root:
A[Parent(i)] ≤ A[i]

Max-Heap

A max-heap is an almost complete binary tree that
satisfies the heap property:

For every node i other than the root,
A[PARENT(i)] ≥ A[i]

What does this mean?
• the value of a node is at most the value of its
parent
• the largest element in the heap is stored in the root
• subtrees rooted at a node contain smaller values
than the node itself

16

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

1

1
0

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Height of a node in a heap

The height of a node in a heap is the
number of edges on the longest simple
downward path from the node to a leaf.

The height of a heap is the height of its
root.

Since a heap of n elements is based on a
complete binary tree, its height is Θ(lg n).

Heaps have 5 basic procedures

• HEAPIFY: maintains the heap property
• BUILD-HEAP: builds a heap from an
unordered array
• HEAPSORT: sorts an array in place
• EXTRACT-MAX: selects max element
• INSERT: inserts a new element

We’ll work with MAX heaps

MAX-HEAPIFY(A,i)

• Goal is to put the ith element in the correct
place in a portion of the array that
“almost” has the heap property.

• The only element with index of i or
greater that is out of place is A[i].

• Assume that left and right subtrees of A[i]
have the heap property.

• “Sift” A[i] down to the right position.

16

1

4

2

10

3

14

4

7

5

9

6

3

7

2

8

8

9

1

1
0

MAX-HEAPIFY(A,2) heap-size[A] = 10

i

Array element 2, the
“4”, is out of place.

16

1

14

2

10

3

4

4

7

5

9

6

3

7

2

8

8

9

1

1
0

MAX-HEAPIFY(A,4) heap-size[A] = 10

i

Moving the 4 down.

16

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

1

1
0

MAX-HEAPIFY(A,9) heap-size[A] = 10

The 4 is in the
right spot, and the
heap property of
the tree has been
restored.

MAX-HEAPIFY
MAX-HEAPIFY(A, i)
1 l ← LEFT(i)
2 r ← RIGHT(i)
3 if l ≤ heap-size[A] and A[l] > A[i]
4 then largest ← l
5 else largest ← i
6 if r ≤ heap-size[A] and A[r] > A[largest]
7 then largest ← r
8 if largest ≠ i
9 then exchange A[i] ↔ A[largest]
10 MAX-HEAPIFY(A, largest)

Running time of MAX-HEAPIFY

• Run time of MAX-HEAPIFY(A,i)
– Look at lines 1 –9
– Is there a loop? No.
– Does the number of steps depend upon

n? No.
– So the running time so far is Θ(1)
– How about line 10? We don’t know

yet.

Running time of MAX-HEAPIFY

The recursive call to MAX-HEAPIFY in line
10 implies a recurrence relation.

When we call MAX_HEAPIFY again, we
already know that lines 1-9 cost Θ(1)
steps.

But we may need to call MAX-HEAPIFY on
a subtree rooted at one of the children of
the current node, so we have to add the
cost of doing that.

Running time of MAX-HEAPIFY

How many nodes might be involved?
 In the case of a

full binary tree,
about half of the
tree might be
involved.

Running time of MAX-HEAPIFY

 In a complete binary
tree with 15 nodes, 8 of
those nodes are leaves
at the bottom level.

If we perform MAX-
HEAPIFY on node i, 7
of the 15 nodes will be
involved – about ½ of
the nodes.

i

Running time of MAX-HEAPIFY
What is the worst case?
When the last row of the tree is half full.

16

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

1

10 11

Here 7 out of 11
nodes are
involved.

In general, ≤ 2/3rds

of the tree might
be involved in the
worst case.

5

Running time of MAX-HEAPIFY

Remember that, in a complete binary tree, more
than half of the nodes in the entire tree are the
leaf nodes on the bottom level of the tree.

But the only nodes involved in MAX-HEAPIFY
are the descendants of A[i], which must be in
A[i]’s half of the tree.

So worst case is when the last row of the tree is
half full on the left side and A[i] is their
ancestor.

Running time of MAX-HEAPIFY

The subtrees of the children of our current
node have size at most 2n/3.

The running time of MAX_HEAPIFY can
be described by the recurrence:
T(n) ≤ T(2n/3) + Θ(1)

This is Case 2 by the master method, so:
T(n) = O(lg n)

Running time of MAX-HEAPIFY

We could also describe the running time of
MAX-HEAPIFY for a node of height h
as O(h). (This is useful only if we know
the height of a specific node.)

BUILD-MAX-HEAP

• Use MAX-HEAPIFY in a bottom-up
manner to convert an array A[1..n] into a
heap.

• Each leaf is initially a one-element heap.
Elements A[n/2 + 1..n] are leaves.

• MAX-HEAPIFY is called on all interior
nodes.

BUILD-MAX-HEAP

BUILD-MAX-HEAP(A)
1 heap-size[A] ← length[A]
2 for i ← floor(length[A]/2) downto 1 do
3 MAX-HEAPIFY(A, i)

4

1

1

2

3

3

2

4

16

5

9

6

10

7

14

8

8

9

7

1
0

4 1 3 2 16 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

i

a.

length(A) = 10

floor(length(A)/2) = 5

process from 5 to 1

4

1

1

2

3

3

2

4

16

5

9

6

10

7

14

8

8

9

7

1
0

4 1 3 2 16 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

i

b.

4

1

1

2

3

3

14

4

16

5

9

6

10

7

2

8

8

9

7

1
0

4 1 3 14 16 9 10 2 8 7

1 2 3 4 5 6 7 8 9 10

i

c

4

1

1

2

10

3

14

4

16

5

9

6

3

7

2

8

8

9

7

1
0

4 1 10 14 16 9 3 2 8 7

1 2 3 4 5 6 7 8 9 10

i

d

4

1

16

2

10

3

14

4

7

5

9

6

3

7

2

8

8

9

1

1
0

4 16 10 14 7 9 3 2 8 1

1 2 3 4 5 6 7 8 9 10

i
e

16

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

1

1
0

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

f

Running Time of BUILD-MAX-HEAP

• Simple upper bound:
– each call to MAX-HEAPIFY costs O(lg n)
– O(n) such calls
– running time at most O(n lg n)

• Previous bound is not tight:
– lots of the elements are leaves
– most elements are near leaves (small height)

Tighter Bound for BUILD-MAX-HEAP

By substituting x = ½ in the formula for
differentiating infinite geometric series, we have:

n lg

0 h 2

n
1h

OO(h)=∑
=

+

∑
=

 n

 h
h
hn

lg

0 2

()
2

2 2
0

=
1/2−1
1/2

=∑
∞

= h h

h

Tighter Bound for BUILD-MAX-
HEAP (continued)

Thus the running time is bounded by:

Therefore, we can build a heap from an
unordered array in linear time.

()nOhnOhnO

h
h

 n

 h h
=

∑=

∑

∞

== 0

lg

0 22

Heapsort

• First build a heap.
• Then successively remove the biggest

element from the heap and move it to the
first position in the sorted array.

• The element currently in that position is
then placed at the top of the heap and
sifted to the proper position.

HEAPSORT

HEAPSORT(A)
1 BUILD-MAX-HEAP(A)
2 for i ← length[A] downto 2 do
3 exchange A[1] ↔ A[i]
4 heap-size[A] ← heap-size[A] – 1
5 MAX-HEAPIFY(A, 1)

16

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

1

1
0

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

1

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

16

1
0

1 14 10 8 7 9 3 2 4 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

14

1

8

2

10

3

4

4

7

5

9

6

3

7

2

8

1

9

16

1
0

14 8 10 4 7 9 3 2 1 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

14

1

8

2

10

3

4

4

7

5

9

6

3

7

2

8

1

9

16

1
0

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

14 8 10 4 7 9 3 2 1 16

1 2 3 4 5 6 7 8 9 10

1

1

8

2

10

3

4

4

7

5

9

6

3

7

2

8

14

9

16

1
0

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

1 8 10 4 7 9 3 2 14 16

1 2 3 4 5 6 7 8 9 10

10

1

8

2

9

3

4

4

7

5

1

6

3

7

2

8

14

9

16

1
0

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

10 8 9 4 7 1 3 2 14 16

1 2 3 4 5 6 7 8 9 10

10

1

8

2

9

3

4

4

7

5

1

6

3

7

2

8

14

9

16

1
0

10 8 9 4 7 1 3 2 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

2

1

8

2

9

3

4

4

7

5

1

6

3

7

10

8

14

9

16

1
0

2 8 9 4 7 1 3 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

9

1

8

2

3

3

4

4

7

5

1

6

2

7

10

8

14

9

16

1
0

9 8 3 4 7 1 2 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

9

1

8

2

3

3

4

4

7

5

1

6

2

7

10

8

14

9

16

1
0

9 8 3 4 7 1 2 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

2

1

8

2

3

3

4

4

7

5

1

6

9

7

10

8

14

9

16

1
0

2 8 3 4 7 1 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

8

1

7

2

3

3

4

4

2

5

1

6

9

7

10

8

14

9

16

1
0

8 7 3 4 2 1 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

8

1

7

2

3

3

4

4

2

5

1

6

9

7

10

8

14

9

16

1
0

8 7 3 4 2 1 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

1

1

7

2

3

3

4

4

2

5

8

6

9

7

10

8

14

9

16

1
0

1 7 3 4 2 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

7

1

4

2

3

3

1

4

2

5

8

6

9

7

10

8

14

9

16

1
0

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

7 4 3 1 2 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

7

1

4

2

3

3

1

4

2

5

8

6

9

7

10

8

14

9

16

1
0

7 4 3 1 2 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

2

1

4

2

3

3

1

4

7

5

8

6

9

7

10

8

14

9

16

1
0

2 4 3 1 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

4

1

2

2

3

3

1

4

7

5

8

6

9

7

10

8

14

9

16

1
0

4 2 3 1 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

4

1

2

2

3

3

1

4

7

5

8

6

9

7

10

8

14

9

16

1
0

4 2 3 1 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

1

1

2

2

3

3

4

4

7

5

8

6

9

7

10

8

14

9

16

1
0

1 2 3 4 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

3

1

2

2

1

3

4

4

7

5

8

6

9

7

10

8

14

9

16

1
0

3 2 1 4 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

3

1

2

2

1

3

4

4

7

5

8

6

9

7

10

8

14

9

16

1
0

3 2 1 4 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

1

1

2

2

3

3

4

4

7

5

8

6

9

7

10

8

14

9

16

1
0

1 2 3 4 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

2

1

1

2

3

3

4

4

7

5

8

6

9

7

10

8

14

9

16

1
0

2 1 3 4 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

2

1

1

2

3

3

4

4

7

5

8

6

9

7

10

8

14

9

16

1
0

2 1 3 4 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

1

1

2

2

3

3

4

4

7

5

8

6

9

7

10

8

14

9

16

1
0

1 2 3 4 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

1

1

2

2

3

3

4

4

7

5

8

6

9

7

10

8

14

9

16

1
0

1 2 3 4 7 8 9 10 14 16

1 2 3 4 5 6 7 8 9 10

BUILD-MAX-HEAP(A)
for i ← length[A] downto 2 do

exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A] – 1
MAX-HEAPIFY(A, 1)

Running time of Heapsort
HEAPSORT(A)
1 BUILD-MAX-HEAP(A)
2 for i ← length[A] downto 2 do
3 exchange A[1] ↔ A[i]
4 heap-size[A] ← heap-size[A] – 1
5 MAX-HEAPIFY(A, 1)

Is there a loop? If so, how many times will it
execute? What is the cost of one iteration of the
loop?

Running time of Heapsort
HEAPSORT(A)
1 BUILD-MAX-HEAP(A) O(n)
2 for i ← length[A] downto 2 do O(n-1)
3 exchange A[1] ↔ A[i] O(1)
4 heap-size[A] ← heap-size[A] – 1 O(1)
5 MAX-HEAPIFY(A, 1) O(lg n)

Total time is:
O(n) + O(n-1) * [O(1) + O(1) + O(lg n)]

which is approximately
O(n) + O(n lg n)

or just O(n lg n)

Running time of Heapsort

• BUILD-MAX-HEAP takes O(n).
• We have a loop. Each of the n-1 calls to

MAX-HEAPIFY takes O(lg n) time.
• Total time is O(n lg n).
• Will heap sort always take O(n lg n) time?

Is there a best-case scenario? Is there a
worst-case scenario? Why or why not?

Space requirements of Heapsort

• Heapsort uses an array as its data structure.
• Heapsort sorts “in place”.
• Any extra storage needed?
• Only a negligible amount – one extra

storage location is needed as temporary
storage when swapping two array
elements.

Priority Queues

• A priority queue is a data structure for
maintaining a set S of elements, each
with an associated value called a key.

• Applications include
– scheduling jobs on a shared computer

(max-priority queue)
– event-driven simulators (min-priority

queue)

Handles
• Elements of priority queue correspond to objects in

application.
• We must be able to determine which application

object corresponds to a given priority-queue
element.

• We store a handle (pointer, integer, etc.) to the
corresponding application object in each heap
element.

• We also store a handle (array index) to the
corresponding heap element in each application
object.

Max-Priority Queue Operations

• INSERT(S,x): insert element x into set S
• MAXIMUM(S): return element of S with

the largest key
• EXTRACT-MAX(S): remove and return

element of S with the largest key
• INCREASE-KEY(S, x, k): increase value

of x’s key to k, where k is at least as large
as x’s current key value

Min-Priority Queue Operations

• INSERT(S,x): insert element x into set S
• MINIMUM(S): return element of S with

the smallest key
• EXTRACT-MIN(S): remove and return

element of S with the smallest key
• DECREASE-KEY(S, x, k): decrease

value of x’s key to k, where k is at least as
small as x’s current key value

Priority Queue Operations

• All operations can be done on a set of
size n in O(lg n) time

HEAP-MAXIMUM

HEAP-MAXIMUM(A)
1 return A[1]

• Returns the item at the top of the heap
• Runs in Θ(1) time

HEAP-EXTRACT-MAX

HEAP-EXTRACT-MAX(A)

1 if heap-size[A] < 1

2 then error “heap underflow”

3 max ← A[1]

4 A[1] ← A[heap-size[A]]

5 heap-size[A] ← heap-size[A] - 1
6 MAX-HEAPIFY(A,1)

7 return max

Running time of HEAP-EXTRACT-MAX

HEAP-EXTRACT-MAX(A)

1 if heap-size[A] < 1 O(1)
2 then error “heap underflow” O(1)
3 max ← A[1] O(1)
4 A[1] ← A[heap-size[A]] O(1)
5 heap-size[A] ← heap-size[A] – 1 O(1)
6 MAX-HEAPIFY(A,1) O(lg n)
7 return max O(1)

Any loops? No. So just sum up the times: O(6) + O(lg n)
The dominant term is O(lg n).

HEAP-INCREASE-KEY

HEAP-INCREASE-KEY(A, i, key)

1 if key < A[i]

2 then error “new key is smaller
than current key”

3 A[i] ← key
4 while i > 1 and A[PARENT(i)] < A[i] do

5 exchange A[i] ↔ A[PARENT(i)]

6 i ← PARENT(i)

Example of HEAP-INCREASE-KEY

14 10

8 7 9 3

2 4 1

16

i

Example of HEAP-INCREASE-
KEY (continued)

14 10

8 7 9 3

2 15 1

16

i

Example of HEAP-INCREASE-
KEY (continued)

14 10

15 7 9 3

2 8 1

16

i

Example of HEAP-INCREASE-
KEY (continued)

15 10

14 7 9 3

2 8 1

16

i

Running time of HEAP-INCREASE-KEY
HEAP-INCREASE-KEY(A, i, key)

1 if key < A[i] O(1)

2 then error O(1)

“new key is smaller than current key”

3 A[i] ← key O(1)
4 while i > 1 and A[PARENT(i)] < A[i] do O(lg n)

5 exchange A[i] ↔ A[PARENT(i)] O(3)

6 i ← PARENT(i) O(1)

Any loops? Yes. How many times will the loop execute? As many
times as node i has ancestors, which = the depth of the tree. The
depth of a binary tree is O(lg n). We do a constant amount of
work in the loop. Cost is: O(3) + O(4 lg n), or just O(lg n)

MAX-HEAP-INSERT

MAX-HEAP-INSERT(A,key)

1 heap-size[A] ← heap-size[A] + 1

2 A[heap-size] ← -∞
3 HEAP-INCREASE-KEY(A, heap-size[A], key)

16

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

1

1
0

MAX-HEAP-INSERT(A,15)

16

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

1

1
0

HEAP-INSERT(A,15)

16

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

1

1
0

MAX-HEAP-INSERT(A,15)

16

1

14

2

10

3

8

4

7

5

9

6

3

7

2

8

4

9

1

1
0

MAX-HEAP-INSERT(A,15)

1
5

MAX-HEAP-INSERT

MAX-HEAP-INSERT(A,key)

1 heap-size[A] ← heap-size[A] + 1 O(1)

2 A[heap-size] ← -∞ O(1)
3 HEAP-INCREASE-KEY(A, heap-size[A], key) O(lg n)

Any loops? No.
Add up the times: O(1) + O(1) + O(lg n) = O(2) + O(lg n)
Dominant term is O(lg n), so running time is just O(lg n).

Conclusion

We have seen:
•what a heap is
• how to build a heap
•how to use a heap for sorting
•how to analyze heapsort’s running time
•how to use a heap for priority queues

	Chapter 6�Heapsort
	Chapter 6 Topics
	Heapsort
	Full and Complete Binary Trees
	Examples
	Representation of �Nearly Complete Binary Tree
	Additional Properties of �Nearly Complete Binary Trees
	Numbering
	Heap
	Heap
	Max-Heap
	Slide Number 12
	Height of a node in a heap
	Heaps have 5 basic procedures
	MAX-HEAPIFY(A,i)
	Slide Number 16
	Slide Number 17
	Slide Number 18
	MAX-HEAPIFY
	Running time of MAX-HEAPIFY
	Running time of MAX-HEAPIFY
	Running time of MAX-HEAPIFY
	Running time of MAX-HEAPIFY
	Running time of MAX-HEAPIFY
	Running time of MAX-HEAPIFY
	Running time of MAX-HEAPIFY
	Running time of MAX-HEAPIFY
	BUILD-MAX-HEAP
	BUILD-MAX-HEAP
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Running Time of BUILD-MAX-HEAP
	Tighter Bound for BUILD-MAX-HEAP
	Tighter Bound for BUILD-MAX-HEAP (continued)
	Heapsort
	HEAPSORT
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Running time of Heapsort
	Running time of Heapsort
	Running time of Heapsort
	Space requirements of Heapsort
	Priority Queues
	Handles
	Max-Priority Queue Operations
	Min-Priority Queue Operations
	Priority Queue Operations
	HEAP-MAXIMUM
	HEAP-EXTRACT-MAX
	Running time of HEAP-EXTRACT-MAX
	HEAP-INCREASE-KEY
	Example of HEAP-INCREASE-KEY
	Example of HEAP-INCREASE-KEY (continued)
	Example of HEAP-INCREASE-KEY (continued)
	Example of HEAP-INCREASE-KEY (continued)
	Running time of HEAP-INCREASE-KEY
	MAX-HEAP-INSERT
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	MAX-HEAP-INSERT
	Conclusion

