Lecture 5.

Probabilistic Analysis and
Randomized Algorithms

Sultan ALPAR
associate professor, 1ITU
s.alpar@iitu.edu.kz

Outline

Explain the differences between probabilistic
analysis and randomized algorithms

Present the technique of indicator random
variables

Give another example of the analysis of a
randomized algorithm (permuting an array in
place)

The hiring problem

Scenario:

You are usmg an employment agency to hire a new office assistant.

The agency sends vou one candidate each day.

You interview the candidate and must immediately decide whether or not to
lure that person. But if you hure, you must also fire your current office assis-
tant—even 1f 1t's someone you have recently hired.

Cost to interview 15 ¢; per candidate (interview fee paid to agency).
Cost to hire 15 ¢y per candidate (includes cost to fire current office assistant +
hiring fee paid to agency).

Assume T_hat

You are commutted to having hired, at all times, the best candidate seen so
far. Meaming that whenever you interview a candidate who 1s better than your
current office assistant, you must fire the current office assistant and hare the
candidate. Since you must have someone hired at all times, vou will always
hure the first candidate that you interview.

Goal: Determune what the price of this strategy will be.

Psendocode to model this scenario: Assumes that the candidates are numbered 1
to n and that after interviewing each candidate, we can determune 1f 1t's better than
the current office assistant. Uses a dummy candidate 0 that 1s worse than all others.

so that the first candidate 1s always lured.

HIRE-ASSISTANT(n)
best () = candidate 0 1s a least-qualified dummy candidate
fori < ltonm

do nterview candidate i

if candidate 7 1s better than candidate best
then besr «— i

hire candidate 1

Cosrr If n candidates, and we hare m of them, the cost1s Oing + mecp).

» Have to pay ng; to interview, no matter how many we hire.

+ 5o we focus on analyzing the hiring {'-DS

* mcy varies with each run—it depends on the order in which we interview the
candidates.

» This 15 a model of a common paradigm: we need to find the maximum or
nunmum 1 a sequence by exanuning each element and maintaining a current

“winner. The variable m denotes how many tumes we change our notion of
which element 1s currently winnming.

The hiring problem

- Interview & hire
- Point: after interviewing candidate I, determine if

candidate 1 Is the best candidate you have seen so far
Worst-case analysis
- We hire every candidate that we interview
- Hiring cost: O(nc},)
- We neither have any idea nor have any control over the
order of candidates
What we expect to happen in a typical

or average case?

Probabilistic Analysis(1)

The use of probabillity in the analysis of
problems

Use knowledge (make assumption) about
the distribution of the inputs

Expected cost/running time
Not applicable to all problems

Random order (imply a total order)->
uniform random permutation: n!

Probabilistic Analysis(2)

In general, we have no control over the order in which candidates appear.
We could assume that they come 11 a random order:

+ Assign a rank to each candidate: rank(1) 1s a umque nteger 1 the range 1 to n.

+ The ordered list {rank(1), ranki2), ..., rank(n)) 1s a permutation of the candi-

date numbers {1.2....,n).

* The list of ranks 1s equally likely to be any one of the n! permutations.

+ Equivalently. the ranks form a uniform random permutafion: each of the pos-

sible n! permutations appears with equal probability.

Essential idea of probabilistic analysis: We must use knowledge of, or make as-
sumptions about, the distribution of mputs.

+ The expectation 1s over this distribution.

+ This technique requires that we can make a reasonable characterization of the
mnput distribution.

Randomized Algorithms(1)

Algorithms that make random decisions

That Is

— Can generate a random number x from some range
{1,2...R}.

— Make decisions based on the value of x

— Instead of guessing whether the order is ina
random order, we impose a random order

— Its behavior is determined not only by its input but
also by values produced by a random-number
generator

Randomized Algorithms(2)

For the hiring problem: Change the scenario:

* The employment agency sends us a list of all » candidates in advance.

* On each day, we randomly choose a candidate from the list to interview (but
considering only those we have not yet mterviewed).

+ Instead of relying on the candidates bemg presented to us 1 a random order,
we take control of the process and enforce a random order.

What makes an algorithm randomized: An algorithm 1s randomized if 1ts behav-
101 15 determined in part by values produced by a random-number generator.

* RANDOM(a, b) returns an integer 7, where a <r < b and eachoftheb—a +1
possible values of r 15 equally likely.

« In practice, RANDOM 15 implemented by a pseudorandom-number generator,
whach 15 a deternunistic method returning numbers that “look random and pass
statistical tests.

| ndicat or Random Variables(1)

(Grven a sample space and an event A, we define the indicator random variable
[A) I 1f Aoccurs
‘ 0 if A does not occur .

Lemma
Foranevent A let X4 =I{A}. Then E[X 4] = Pr{A}.

Proof Letting A be the complement of A, we have
E[X4] = E[I{A}]
= 1.Pr{A}+0.Pr{A} (definition of expected value)
= Pr{A} . m (lemma)

Indicator Random Variables(2)

Provide a convenient method for converting
between probabilities and expectations

Sample space and event A, associated with a
iIndicator random variable I{A}

Lemma:

- The expected value of an indicator random variable
associated with an event A iIs equal to the probability
that A occurs

Is very useful and convenient for analyzing
situations in which we perform repeated trials

Analysis of the hiring problem
using indicator random variable

1 Assume the candidates arrive In a random

/\. [lurmper C T1E C C d IIC C O alll

X=X, +X,+...+X -€X;={candidate 1 is hired}
E[Xi]=Pr {candidate I is hired}=1/1
E[X]=Inn+O(1) |

Conclusion: Even though we interview n candidates, -
we only actually hire Inn of them

Useful properties:

X=X1+X:+---+1X,

+ Lemma= E[X;] = Pr{candidate i 15 hured}.

We need to compute Pr{candidate 7 15 hired}.

Candidate 7 1s hured 1f and only 1f candidate 7 1s better than each of candidates

Assumption that the candidates arrive in random order = candidates 1, 2, ..., 1
arrive 11 random order = any one of these first | candidates 15 equally likely to

be the best one so far

Thus. Pr{candidate 7 15 the best so far} = 1/1.
Which implies E[X;] = 1/1.

Hiring Problem

1 Lemmab5.2

Assuming that the candidates are presented In a
random order, algorithm HIRE has a total hiring
cost of O(C,Inn)

m Worst-case Running time

The worst-case hiring cost Is O(nC,,). The
expected Interview cost IS a significant
~Improvement over the worst-case cost

Random Algorithms

1 Explore the distinction between probabilistic analysis and
randomized algorithms

1 Instead of assuming a distribution, we impose a
distribution

1 For probabilistic analysis, the algorithm is determlnlstlc

Ne Number C mes we hire differs for different inpu
(expensive, inexpensive and moderately expensive inputs)

1 For randomized algorithm, the randomization is in the
algorithm not in the input distribution

1 For a given input, each time we run the randomized
algorithm, we get different updates so as to get dlfferent -
cost

1 No particular input elicits its worst-case behavior

Randomly Permuting arrays

1 Randomize the input by permuting the
given Input array

1 Assign each element of the array a

according to these priorities

1 Randomly permuting produces a uniform
random permutation -

‘m Permute the given array in place

Permute-By-Sorting

Permute-By-Sorting (A)
Procedure Permute-By-

1 n€ length [A] Sorting produces a uniform

:2% fOC: 'E ! tEF?ANDOM 13‘random permutation of the
. do P i] - (1,n%) input in ®(nlgn), assume all
4. sort A, using P as sortkeys priorities are unique

o. return A

Pr(X;,N X, N X, N...O X, ,NX,) e

= Pr(X,)IPr(X, | X,)IPr(X, | X, N X_) There are total n!
permutations and

TPr(X; [X, N0X, N X0 X,)00 each permutation

PI(X, | X, N X, N X5sN X, 1) e LT
L1 . probability.

=_[1 M 7
nn-1n-2 n!

Randomize Iin Place

1. n €length [A]
2.fori€l ton
3. doswap A[i]€€eA[RANDOM (i,n)]

Idea: gﬂd— nl = nl

+ Interation i, choose Al7] randomly from A7 .. »] T Kn-K) (n=k)!
« Will never alter A[i] after iteration 1. =n(l’7—1)---(n_k+1)

Time: O(l) per iteration

Correciness: (;iven a set of n elements, a k-perfnutation 1s a sequence containing
k of the n elements. There are n!/(n — k)! possible k-permutations.

Lemma
RANDOMIZE-IN-PLACE computes a nniform random permutation.

Proof of Lemmmab.5

Proof Use a loop mnvariant:

Loop nvariant: Just prior to the ith iteration of the for loop, for each
possible (i — 1)-permutation, subarray A[l..i — 1] contams thas (i — 1)-
permutation with probability (n —7 4+ 1)!/nl.

Imitialization: Just before first iteration, 1 = 1. Loop wnvariant says that for each
possible O-permutation, subarray A[l..0] contamns this O-permutation with
probability n!/n! = 1. A[l..0] 1s an empty subarray, and a O-permutation
has no elements. 50, A[1..0] contains any O-permutation with probabality 1.

Maintenance: Assume that just prior to the ith iteration, each possible (i — 1)-
permutation appears in A[1 .. 7 — 1] with probability (n —7 +1)!/n!. Will show
that after the 7th iteration, each possible 7-permutation appears i A[1..7] with
probability (n —1)!/n! Incrementing i for the next iteration then maintains the

invariant.

Consider a particular 7-permutation 7 = (x, X2, ..., X;). It consists of an
(i — 1)-permutation 7' = {x1, x2,x;_1), followed by x;.

Let E; be the event that the algorithm actually puts 7" into A[1..i —1]. By the
loop wwvanant, Pri{iE;}=(n —1 + 1)!/nl
Let E; be the event that the ith iteration puts x mnto Af7].

We get the i-permutation 7 i A[l..7] if and only 1f both F and E, occur =
the probability that the algorithm produces m i A[L. .1]1s Pr{E, M E;}.

Equation (C.14) = Pr{E, M E;} =Pr{E, | E;}Pri{E;}.
The algorithm chooses x; randomly from the n — 17 + 1 possibilities in A7 .. n]
= Pr{E, | E;}=1/(n —i+ 1). Thus.
PriE, NE} = Pri{E; | E4}PriE,}
1 in—14+1)!

H—i!'+1. n!

Termination: At termunation, i = n 4 1, so we conclude that A[1..#n] 15 a given
n-permutation with probability (n —n)!/n! = 1/n!. B (lemma)

Homework

15.1-25.2-4
15.3-3,
1 Problem 5-1

2D Peak Finding

* Given n X n matrix
of numbers

* Want an entry not
smaller than its (up to)
4 neighbors:

	Slide 1: Lecture 5.
	Slide 2: Outline
	Slide 3: The hiring problem
	Slide 4
	Slide 5: The hiring problem O(nci+mch)
	Slide 6: Probabilistic Analysis(1)
	Slide 7: Probabilistic Analysis(2)
	Slide 8: Randomized Algorithms(1)
	Slide 9: Randomized Algorithms(2)
	Slide 10: Indicator Random Variables(1)
	Slide 11: Indicator Random Variables(2)
	Slide 12: Analysis of the hiring problem using indicator random variable
	Slide 13
	Slide 14: Hiring Problem
	Slide 15: Random Algorithms
	Slide 16: Randomly Permuting arrays
	Slide 17: Permute-By-Sorting
	Slide 18: Randomize in Place
	Slide 19: Proof of Lemma 5.5
	Slide 20
	Slide 21: Homework
	Slide 22

