Lecture 4 *Divide and Conquer*

Sultan ALPAR associate professor, IITU s.alpar@iitu.edu.kz

Lecture 4 Topics

- The substitution method
- The recursion-tree method
- The master method

Designing Algorithms

- There are a number of design paradigms for algorithms that have proven useful for many types of problems
- Insertion sort incremental approach
- Other examples of design approaches
	- divide and conquer
	- greedy algorithms
	- dynamic programming

Divide and Conquer

- A good divide and conquer algorithm generally implies an easy recursive version of the algorithm
- Three steps
	- Divide the problem into a number of subproblems
	- Conquer the subproblems by solving them recursively. When the subproblem size is small enough, just solve the subproblem.
	- Combine the solutions of subproblems to form the solution of the original problem

Merge Sort

- **Divide**
	- divide an n-element sequence into two *n/2* element sequences
- Conquer
	- if the resulting list is of length 1 it is sorted
	- else call the merge sort recursively
- Combine
	- merge the two sorted sequences

MERGE-SORT (A,p,r) **if** p < r *then q*← *(p+r)/2 MERGE-SORT(A,p,q) MERGE-SORT(A,q+1,r) MERGE(A,p,q,r)*

To sort A[1..n], invoke MERGE-SORT with MERGE-SORT(A,1,length(A))

initial sequence

Recurrences

Definition –

a recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs

Recurrence for Divide and Conquer Algorithms

 (1) $\left\{ aT(n/b) + D(n) + C(n) \right\}$ $\begin{array}{c} \end{array}$ $+ D(n)+$ = $aT(n/b) + D(n) + C(n)$ *T n* $\Theta(1)$ (n) *Base case Conquer cost Divide cost Combine cost*

Analysis of Merge-Sort

Here is what we got as the running time:

$$
T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(1) + \Theta(n) & \text{if } n > 1 \end{cases}
$$

We can ignore the $\Theta(1)$ factor, as it is irrelevant compared to $\Theta(n)$, and we can rewrite this recurrence as:

$$
T(n) = \begin{cases} 0(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}
$$

Recurrence for Merge Sort

(1) $\left(2T(n/2)+\Theta(n)\right)$ $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ $\Theta(n)$ for n > $\Theta(1)$ for n = = $2T(n/2) + \Theta(n)$ for $n > 1$ $1)$ for $n = 1$ *T*(*n*)

- \bullet $\Theta(1)$ represents the running time of the base case.
- The "divide" phase really only involves resetting the lower and upper bounds of the current subarray, which has almost no cost associated with it.
- $T(n/2)$ is the cost of each of the "conquer" parts of the algorithm, and we have two parts, for a cost of $2T(n/2)$.
- \bullet Θ (n) is the cost of the "combine" part, the merge function.

Why Recurrences?

- The complexity of many interesting algorithms is easily expressed as a recurrence – especially divide and conquer algorithms
- The complexity of recursive algorithms is readily expressed as a recurrence.

Why solve recurrences?

- To make it easier to compare the complexity of two algorithms
- To make it easier to compare the complexity of the algorithm to standard reference functions.

Example Recurrences for Algorithms

• Insertion sort

$$
T(n) = \begin{cases} 1 & \text{for } n \le 1 \\ T(n-1) + n & \text{otherwise} \end{cases}
$$

• Linear search of a list

$$
T(n) = \begin{cases} 1 & \text{for } n \le 1 \\ T(n-1) + 1 & \text{otherwise} \end{cases}
$$

Recurrences for Algorithms, continued

• Binary search $\overline{\mathcal{L}}$ $\left\{ \right.$ $\begin{cases} 1 & \text{for } n \leq \end{cases}$ = $T(n/2) + 1$ otherwise 1 for $n \leq 1$ *T*(*n*)

"Casual" About Some Details

- Boundary conditions
	- These are usually constant for small *n*
- Floors and ceilings
	- Usually makes no difference in solution
	- Usually assume n is an "appropriate" integer (i.e., a power of 2) and assume that the function behaves the same way if floors and ceilings were taken into consideration

Merge Sort Assumptions

• The actual recurrence describing the worstcase running time for merge sort is:

$$
T(n) = \begin{cases} \Theta(1) & \text{for } n \le 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & \text{otherwise} \end{cases}
$$

• But we typically assume that $n = 2^k$ where k is an integer and use the simpler recurrence.

Methods for Solving Recurrences

- Constructive induction
- Iterative substitution
	- Recurrence trees
- Master Theorem

Constructive Induction

- Use mathematical induction to derive an answer
- Steps
	- 1. Guess the form of the solution
	- 2. Use mathematical induction to find constants or show that they can be found and to prove that the answer is correct

Constructive induction

- Goal
	- Derive a function of *n* (or other variables used to express the size of the problem) that is not a recurrence so we can establish an upper and/or lower bound on the recurrence
	- We may get an exact solution or we may just get upper or lower bounds on the solution

Constructive Induction

- Suppose *T* includes a parameter *n* and *n* is a natural number (positive integer)
- Instead of proving directly that *T* holds for all values of *n*, prove
	- *T* holds for a base case *b* (often *n = 1*)
	- For every $n > b$, if T holds for *n-1*, then T holds for *n*.
		- » Assume *T* holds for *n-1*
		- » Prove that *T* holds for *n* follows from this assumption

Example 1

- Given $T(n) =$ 1 for $n \leq 1$ $T(n-1) + n$ otherwise $\begin{cases} 1 \\ 0 \end{cases}$ $\sqrt{ }$
- Prove $T(n) \in O(n^2)$
	- Note that this is the recurrence for insertion sort and we have already shown that this is $O(n^2)$ using other methods

$$
T(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \in O(n^2)
$$

Proof for Example 1

• Guess that the solution for $T(n)$ is a quadratic equation

$$
T(n) = an^2 + bn + c
$$

- Assume this solution holds for *n-1* $T(n-1) = a(n-1)^2 + b(n-1) + c$
- Now consider the case for *n*. Begin with the recurrence for *T(n)*

 $T(n) = T(n-1) + n$

Proof for Ex. 1, continued

 $T(n) = T(n-1) + n$

We assumed that

 $T(n-1) = a(n-1)^2 + b(n-1) + c$

so we substitute this in the above equation:

 $T(n) = a(n - 1)^2 + b(n - 1) + c + n$

Now let's multiply this out:

 $(n-1)^2 = n^2 - 2n + 1$, so

 $T(n) = an^2 - 2an + a + bn - b + c + n$, and $T(n) = an^2 - 2an + bn + n + a - b + c$, and $T(n) = an^2 + (-2a + b + 1)n + (a - b + c)$

Proof for Ex. 1, continued

We now can see that $T(n) = an^2 + (-2a + b + 1)n + a - b + c.$

We know that a, b, and c are just names for arbitrary constants, so set $a = a$, $b = (-2a + b + 1)$, and $c = (a - b + c)$.

Now we can calculate a:

$$
b = (-2a + b + 1)
$$

\n
$$
0 = -2a + 1 = 1 - 2a
$$

\n
$$
2a = 1
$$

\n
$$
a = 1/2
$$

Proof for Ex. 1, continued

And now we can calculate b:

$$
c = (a - b + c)
$$

$$
0 = a - b
$$

$$
0 = \frac{1}{2} - b
$$

$$
b = \frac{1}{2}
$$

Proof for Ex. 1 continued

The values for a and b are now constrained, but the value for c is not. However, we now have a more complete hypothesis, and we can use this new hypothesis and the definition of the recurrence to get a value for c.

We know that:

 $T(n) = \frac{1}{2} n^2 + \frac{1}{2} n + c$ and substituting 0 for n we get $T(0) = \frac{1}{2} 0^2 + \frac{1}{2} 0 + c = c$

but

$$
T(0) = 0
$$
 (the case when $n = 0$)

so

$$
T(0)=c=0
$$

Proof for Ex. 1 continued

We know that:

 $T(n) = \frac{1}{2} n^2 + \frac{1}{2} n + c$ Substituting 0 for c we get $T(n) = \frac{1}{2} n^2 + \frac{1}{2} n$ for $n \ge 0$ which, in Big-O notation is: $O(n^2)$

Compare this to what we determined to be the running time of Insertion Sort by a direct analysis of the algorithm:

$$
T(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \in O(n^2)
$$

Example 2 – Establishing an Upper Bound

- Recurrence : $T(n) = 4T(n/2) + n$
- Guess : $T(n) \in O(n^3)$

Assumption : $n = 2^k$ where k is an integer

 \leq 1/2 $cn^3 + n$ $\leq 4c(n/2)^3 + n$ $\boldsymbol{0}$ Assume $T(n/2) \le c(n/2)^3 \quad \forall n \ge n$ 0 In this case we want to prove that $T(n) \leq cn^3$ $\forall n \geq n$ $T(n) = 4T(n/2) + n$ Starting with the recurrence for $T(n)$

This is not quite what we need : $T(n) \leq c(n)^3$

Ex. 2 – Establishing an Upper Bound

We want to prove that $T(n) \le cn^3$ $\forall n \ge n_0$ $T(n) \le cn^3 \quad \forall n \ge n$

 $\leq cn^3$ $\forall c > 2$ and $n > 1$ $\leq cn^3 - (\frac{1}{2}cn^3 - n)$ $T(n) \leq 1/2cn^3 + n$ Trick $T(n) \leq 1/2cn^3 + n$ 2 $\leq cn^3 - (\frac{1}{2}cn^3 - n)$

The "trick" is recognizing that if $x \le y - z$ then it must be true that $x \leq y$ (provided that z is positive).

General heuristic – try to write the expression in the form

 α < answer you want $> -$ < something greater than 0 $>$

Ex. 2 – Establishing an Upper Bound

We still need a boundary condition specified. We have shown that $T(n) \le cn^3$ for all $c > 2$ and $n \ge$ 1.

Now select a c value that is large enough to satisfy a boundary condition. In this case we can select $c = 3$ for a boundary condition of $n = 1$.

Note that we have established an upper bound, but it is not a tight upper bound. See the next example.

Ex. 3 – Fallacious Argument

Guess: $T(n) \in O(n^2)$ Recurrence: $T(n) = 4T(n/2) + n$

Assumption: $n = 2^k$ where k is an integer

In this case we want to prove that $T(n) \leq cn^2 \quad \forall n \geq n_0$ $T(n) \leq c n^2 \quad \forall n \geq n$

Assume $T(n/2) \leq c(n/2)^2 \quad \forall n \geq n_0$ $T(n/2) \le c(n/2)^2 \quad \forall n \ge n$

Starting with the recurrence for $T(n)$

$$
T(n) = 4T(n/2) + n
$$

$$
\leq 4c(n/2)^2 + n
$$

$$
\leq cn^2 + n
$$

 $\therefore T(n) \in O(n^2)$

for $n \leq 0$ and it must hold for all *n* greater than the base But this is incorrect, because $cn^2 + n \leq cn^2$ only holds

Example 3 – Try again

When you get to this point

 $T(n) \le cn^2 + n$

Revise the inductive hypothesis

Heuristic :

When you find yourself in the situation

 you substract a lower order term. start over with a new inductive hypothesisin which $T(n) \leq$ < term you want > + < something + >

Guess $T(n) \le c_1 n^2 - c_2$ 2 $T(n) \le c_1 n^2 - c_2 n$

Assume
$$
T(n/2) \le c_1(n/2)^2 - c_2(n/2)
$$

Starting with recurrence

 $T(n) = 4T(n/2) + n$

Ex. 3–Try again, continued

 $\leq c_1 n^2 - c_2 n - (c_2 n - n)$ $\leq c_1 n^2 - 2c_2$ $\leq 4(c_1(n/2)^2-c_2(n/2))$ $T(n) = 4T(n/2) + n$ Starting with the recurrence 2 $\leq c_1 n^2 - c_2 n - (c_2 n - n)$ 2 $\leq c_1 n^2 - 2c_2 n + n$ 2 $\leq 4(c_1(n/2)^2 - c_2(n/2)) + n$

 $(n) \le c_1 n^2 - c_2 n$ for all $c_2 \ge 1$ last term is positive for all values of $c_2 \ge 1$ so Now the first two terms are in the correct form and the 2 $T(n) \le c_1 n^2 - c_2 n$ for all $c_2 \ge$

Select c_1 to be large enough to handle the intial conditions.

Boundary Conditions

- Boundary conditions are not usually important because we don't need an actual *c* value (if polynomially bounded)
- But sometimes it makes a big difference
	- Exponential solutions
	- Suppose we are searching for a solution to: $T(n) = T(n/2)^2$
	- and we find the partial solution:

 $T(n) = c^n$

Boundary Conditions, cont.

If the boundary condition is

 $T(n) = 2$

this implies that $T(n) \in \Theta(2^n)$.

But if the boundary condition is

 $T(n) = 3$

this implies that $T(n) \in \Theta(3^n)$,

and $\Theta(3^n) \neq \Theta(2^n)$.

The results are even more dramatic if $T(1) = 1$

$$
T(1) = 1 \Longrightarrow T(n) = \Theta(1^n) = \Theta(1)
$$
Boundary Conditions

The solutions to the recurrences below have very different upper bounds:

 $T(n) =$ 1 for $n = 1$ *T*(*n*/2) ² otherwise $\begin{cases} 1 \\ 0 \end{cases}$ $\begin{bmatrix} 1 \end{bmatrix}$ $T(n) =$ 2 for $n=1$ *T*(*n*/2) ² otherwise $\left\{\begin{matrix} 2 \\ 2 \\ 3 \end{matrix}\right\}$ $\Bigg) 7$ $T(n) =$ 3 for $n = 1$ *T*(*n*/2) ² otherwise $\left(\begin{array}{c} 1 \\ 1 \\ 2 \end{array}\right)$ $\begin{bmatrix} 1 \end{bmatrix}$

- Called *iterative substitution*
- Sometimes referred to as *plug and chug*.
- In iterative substitution we substitute the original form of the recurrence everywhere T occurs on the right side of the recurrence equation.
- Repeat as needed until a pattern appears.
- The math can be messy with this method.
- Sometimes we can use this method to get an estimate that we can use for the substitution method.

Look at the recurrence relation:
\n
$$
\begin{cases}\n0 & \text{if } n = 0 \\
T(n) = \begin{cases}\nT(n-1) + n & \text{if } n > 0\n\end{cases}\n\end{cases}
$$

Substituting $n - 1$ for n in the relation above we get:

 $T(n-1) = T(n-2) + (n-1)$

Substitute for $n - 1$ in the original relation:

$$
T(n) = (T(n-2) + (n-1)) + n
$$

We know that

 $T(n-2) = T(n-3) + (n-2)$

So substitute this for $T(n-2)$ above:

$$
T(n) = (T(n-3) + (n-2)) + (n-1) + n
$$

We see the following pattern:
\n
$$
T(n) = T(n - 1) + n
$$
\n
$$
T(n) = (T(n - 2) + (n - 1)) + n
$$
\n
$$
T(n) = (T(n - 3) + (n - 2)) + (n - 1) + n
$$
\n...
\n
$$
T(n) = T(n - (n - 2)) + 2 + 3 + ... + (n - 2) + (n - 1) + n
$$
\n
$$
T(n) = T(n - (n - 1)) + 2 + 3 + ... + (n - 2) + (n - 1) + n
$$
\n
$$
T(n) = T(n - (n - 0)) + 2 + 3 + ... + (n - 2) + (n - 1) + n
$$
\nWe can rewrite $(n - (n - 0))$ as $(n - n)$ or as (0) , thus:
\n
$$
T(n) = T(0) + 1 + 2 + 3 + ... + (n - 2) + (n - 1) + n
$$
\nBut we know that $T(0) = 0$ is the base case, so:
\n
$$
T(n) = 0 + 1 + 2 + 3 + ... + (n - 2) + (n - 1) + n
$$

The summation of

$$
T(n) = 0 + 1 + 2 + 3 + ... + (n - 2) + (n - 1) + n
$$

is

 $T(n) = (n (n + 1) / 2) = \frac{1}{2} n^2 + \frac{1}{2} n$ which we recognize as $O(n^2)$.

Let's look at the recurrence equation for Merge Sort again:

$$
T(n) = \begin{cases} \nc & \text{if } n = 1\\ \n2T(n/2) + cn & \text{if } n > 1\n\end{cases}
$$

Let's substitute $2T(n/2) + cn$ for $T(n/2)$ in the expression above:

$$
2T(n/2) + cn = 2(2T((n/2)/2) + c(n/2)) + cn
$$

= 2²T(n/2²) + 2cn

Let's substitute $2T(n/2) + cn$ again: $= 2^{2}(2T((n/2^{2})/2 + c((n/2)/2) + 2cn))$ $= 2^{3}T(n/2^{3}) + 3cn$

What pattern emerges?

 $2^{1}T(n/2^{1}) + 1cn$ $2^2T(n/2^2) + 2cn$ $2^{3}T(n/2^{3}) + 3cn$ ↓ $2^i T(n/2^i) + i$ cn

Assume that $n = 2^{i}$ (n is an integer power of 2); then $i = log₂ n$. Substituting $log₂$ n for i gives: $2^{\log_{2} n} \cdot T(n/n) + \log_{2} n \cdot c \cdot n$ Remember that $a^{\log}b^n = n^{\log}a^$, so we have $n^{\log_2 2} \cdot T(n/n) + \log_2 n \cdot c \cdot n$

 $n^{\log}2^2$ is n¹ or simply n, so we have: $n \cdot T(n/n) + log_2 n \cdot c \cdot n$ We know that $n/n = 1$, so we have: $n \cdot T(1) + log_2 n \cdot c \cdot n$

We know that $T(1)$ is the base case for this recurrence, and $T(n) = c$ if $n = 1$, so we have:

 $n \cdot c + log_2 n \cdot c \cdot n$

Rearranging the right and left sides of the summation gives:

 $c \cdot n \cdot log_2 n + c \cdot n$

Which is $O(n \log_2 n)$

Example 4

 $T(n) = n + 4T(n/2)$

Start iterating the recurrence

 $= n + 2n + 16T(n/4)$ $T(n) = n + 4(n/2 + 4T(n/4))$

Iterate the recurrence again

$$
T(n) = n + 2n + 16(n/4 + 4T(n/8))
$$

= n + 2n + 4n + 64T(n/8)

We observe that the *ith* term in the series is $2^{i}n$

 $n/2^{i} = 1$ If we use 1 as the boundary condition, it will be when we reach How far do we iterate before we reach a boundary condition?

Example 4, continued

When

$$
n/2^i = 1
$$
 then $i = \lg n$

 \blacksquare Now, since we know that the *ith* term is $2^i n$ we can rewrite the series as

$$
T(n) = n + 2n + 4n + ... + 2^{\lg n} nT(1)
$$

Remember that $a^{\log_b n} = n^{\log_b a}$

$$
T(n) = n + 2n + 4n + ... + n^{\lg 2}n
$$

= n + 2n + 4n + ... + n²
= n + 2n + 4n + ... + 2^{\lg n-1}n + n²

$$
T(n) = n + 2n + 4n + ... + 2^{\lg n - 1}n + n^2T(1)
$$

Factor out a geometric progression

$$
\sum_{i=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1} \quad \text{for } x \neq 1
$$

\n
$$
T(n) = n(2^{0} + 2^{1} + 2^{2} ... + 2^{lg n - 1}) + n^{2} T(1)
$$

\n
$$
= n\left(\frac{2^{lg n} - 1}{2 - 1}\right) + \Theta(n^{2})
$$

\n
$$
= n(n - 1) + \Theta(n^{2})
$$

\n
$$
= \Theta(n^{2}) + \Theta(n^{2})
$$

\n
$$
= \Theta(n^{2})
$$

Recurrence Trees

- Allow you to visualize the process of iterating the recurrence
- Allows you make a good guess for the substitution method
- Or to organize the bookkeeping for iterating the recurrence
- Example

$$
T(n) = T(n/4) + T(n/2) + n^2
$$

Since the values decrease geometrically, the total is at most a constant factor more than the largest term and hence the solution is $\Theta(n^2)$

Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows $T(n)$, which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $log_4 n$ (it has $log_4 n + 1$ levels).

Figure 4.2 A recursion tree for the recurrence $T(n) = T(n/3) + T(2n/3) + cn$.

Figure 4.3 The recursion tree generated by $T(n) = aT(n/b) + f(n)$. The tree is a complete a-ary tree with $n^{\log_b a}$ leaves and height $\log_b n$. The cost of each level is shown at the right, and their sum is given in equation (4.6) .

Figure 4.4 The recursion tree generated by $T(n) = aT(\lceil n/b \rceil) + f(n)$. The recursive argument n_j is given by equation (4.12) .

The master method

Provides a cookbook method for solving recurrences of the form

$$
T(n) = aT(n/b) + f(n)
$$

where $a \ge 1$ and $b > 1$ and $f(n)$ is an asymptotically positive function.

Divide and Conquer Algorithms

• The form of the master theorem is very convenient because divide and conquer algorithms have recurrences of the form

$$
T(n) = aT(n/b) + D(n) + C(n)
$$

where

a is the number of subproblems at each step $1/b$ is the size of each subproblem $D(n)$ is the cost of dividing into subproblems $C(n)$ is the cost of combining the solutions to subproblems

Form of the Master Theorem

- Combines $D(n)$ and $C(n)$ into $f(n)$
- For example, in Merge-Sort

$$
T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1a = 2 \end{cases}
$$

$$
a = 2, b = 2
$$

$$
f(n) = \Theta(n)
$$

• We will ignore floors and ceilings. The proof of the Master Theorem includes a proof that this is ok.

Form of the Master Theorem

- Combines $D(n)$ and $C(n)$ into $f(n)$
- For example, in Merge-Sort

$$
T(n) = \begin{cases} \Theta(1) & \text{for } n = 1 \\ 2T(n/2) + \Theta(n) & \text{for } n > 1 \end{cases}
$$

$$
a = 2, b = 2
$$

$$
f(n) = \Theta(n)
$$

We will ignore floors and ceilings. The proof of the Master Theorem includes a proof that this is ok.

Form of the Master Theorem

• The Master Method is used for recurrence equations of the form:

$$
T(n) = \begin{cases} c & \text{for } n < d \\ aT(n/b) + f(n) & \text{for } n \ge 1 \end{cases}
$$

Master theorem

Let $a \ge 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let *T(n)* be defined on the nonnegative integers by the recurrence

$$
T(n) = aT(n/b) + f(n)
$$

where we interpret n/b to mean either the floor or ceiling of *n/b*. Then *T(n)* can be bounded asymptotically as follows:

Master theorem

Case 1: if
$$
f(n) = O(n^{\log_b a - \varepsilon})
$$
 for some constant $\varepsilon > 0$, then
\n
$$
T(n) = \Theta(n^{\log_b a})
$$
\nCase 2: if $f(n) = \Theta(n^{\log_b a})$, then
\n
$$
T(n) = \Theta(n^{\log_b a} \lg n)
$$
\nCase 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and
\nif $af(n/b) \le cf(n)$ for some constant $c < 1$ and all
\nsufficiently large n, then

$$
T(n) = \Theta(f(n))
$$

3 cases

1. If there is a small constant $\varepsilon > 0$, such that

$$
f(n) = O(n^{\log_b a - \varepsilon})
$$

then $T(n)$ is $\Theta(n^{\log_b a})$

Here $f(n)$ is polynomially smaller than the special function $n^{\log_b a}$

3 cases

2. If $f(n) = \Theta(n^{\log_b a})$

then $T(n)$ is

$$
\Theta\!\!\left(n^{\log_b{a}}\lg{n}\right)
$$

Here $f(n)$ is asymptotically equal to the special function $n^{\log_b a}$

3 cases

3. If there are small constants $\varepsilon > 0$ and $c < 1$, such that $af(n/b) \leq cf(n)$

$$
f\big(n\big) = \Omega\big(n^{\log_b a + \varepsilon}\big)
$$

for all sufficiently large n, then $T(n)$ is

$$
\Theta\big(f\big(n\big)\big)
$$

Here $f(n)$ is polynomially <u>larger</u> than the special function $n^{\log_b a}$

What does the master theorem say?

Compare two functions:

 $T(n) = \Theta(n^{\log_b a})$ When $f(n)$ grows asymptotically slower (Case 1) $f(n)$ and *n* $\log_b a$

When the growth rates are the same (Case 2)

$$
T(n) = \Theta(f(n) \lg n) = \Theta(n^{\log_b a} \lg n)
$$

 $T(n) = \Theta(f(n))$ When $f(n)$ grows asymptotically faster (Case 3)

Using the master method, solve the recurrence $T(n) = 4T(n/2) + n$

Remember the form the recurrence must have: $T(n) = aT(n/b) + f(n)$

Here
$$
a = 4
$$
, $b = 2$, and $f(n) = n$

Plug these values into our special function $n^{\log_b a}$

and we get $n^{\log_2 4}$ or = n². Does $f(n) = O(n^{2-\epsilon})$? Yes, if $\epsilon = 1$. So this is Case 1, and $T(n) = \Theta(n^{\log_2 4}) = \Theta(n^2)$

How do we know that this is Case 1, and not Case 2 or Case 3? Look at *f(n)*. Does:

$$
f(n) = O(n^{\log_b a - \varepsilon})
$$
yes

$$
f(n) = \Theta(n^{\log_b a})
$$
no

$$
f(n) = \Omega(n^{\log_b a + \varepsilon})
$$
no

$$
T(n) = 64T(n/4) + n
$$

\n
$$
a = 64 \t b = 4 \t f(n) = n
$$

\n
$$
n^{\log_b a} = n^{\log_4 64} = n^3 = \Theta(n^3)
$$

Since
$$
f(n) = O(n^3)
$$
 where $\varepsilon = 2$,
case 1 applies and
 $T(n) = \Theta(n^3)$

Using the master method, solve the recurrence $T(n) = T(2n/3) + 1$

Remember the form the recurrence must have: $T(n) = aT(n/b) + f(n)$

Here $a = 1$, $b = 3/2$, and $f(n) = 1$ Plug these values into our special function and we get $n^{\log_{3/2} 1}$ or = $n^0 = 1$. Does $f(n) = \Theta(1)$? Yes. So this is Case 2, and

$$
T(n) = \Theta(1 \bullet \lg n) = \Theta(\lg n)
$$

$$
T(n) = T(3n/4) + 1
$$

\n
$$
a = 1 \t b = 4/3 \t f(n) = 1
$$

\n
$$
n^{\log_b a} = n^{\log_{4/3} 1} = n^0 = 1
$$

 $T(n) = \Theta(\lg n)$ Case 2 applies and

Using the master method, solve the recurrence $T(n) = T(n/3) + n$

Remember the form the recurrence must have:

$$
T(n) = aT(n/b) + f(n)
$$

Here $a = 1$, $b = 3$, and $f(n) = n$ Plug these values into our special function and we get $n^{\log_3 1}$ or = $n^0 = 1$. Does $f(n) = \Omega(n^{0+\epsilon})$? Yes; $\epsilon = 1$, and $af(n/b) = n/3 = (1/3)f(n)$, giving $c =$ 1/3. So this is Case 3, and

 $T(n) = \Theta(f(n)) = \Theta(n)$

$$
T(n) = 3T(n/4) + n \lg n
$$

\n
$$
a = 3 \t b = 4 \t f(n) = n \lg n
$$

\n
$$
n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})
$$

Since
$$
f(n) = \Omega(n^{\log_4 3 + \varepsilon})
$$
,
case 3 applies and
 $T(n) = \Theta(n \lg n)$

Conclusion

- We talked about:
	- \checkmark The substitution method (2 types)
	- The recursion-tree method
	- **√The master method**
- Be able to solve recurrences using all three of these methods.
The Master Theorem

where n/b can be either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$ sufficiently large n, then $T(n) = \Theta(f(n))$ if $af(n/b) \le cf(n)$ for some constant $c < 1$ and all 3. If $f(n) = \Omega(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, and 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$ then $T(n) = \Theta(n^{\log_b a})$ 1. If $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, Then $T(n)$ can be bounded asymptotically as follows: recurrence $T(n) = aT(n/b) + f(n)$ and let $T(n)$ be defined on the nonegative integers by the Let $a \ge 1$ and $b > 1$ be constants, let $f(n)$ be a function,