[Lecture 4
Divide and Conquer

Sultan ALPAR
associate professor, IITU
s.alpar@iitu.edu.kz

Lecture 4 Topics

ne substitution met

ne recursion-tree m

ne master method

nod
ethod

Designing Algorithms

- There are a number of design paradigms for
algorithms that have proven useful for many
types of problems

- Insertion sort — incremental approach
- Other examples of design approaches
. divide and conquer

- greedy algorithms

. dynamic programming

Divide and Conquer

- A good divide and conquer algorithm generally
Implies an easy recursive version of the
algorithm

. Three steps
- Divide the problem into a number of subproblems

- Conquer the subproblems by solving them
recursively. When the subproblem size is small
enough, just solve the subproblem.

- Combine - the solutions of subproblems to form the
solution of the original problem

Merge Sort

= Divide
» divide an n-element sequence into two n/2
element sequences
= Conquer
o If the resulting list is of length 1 it is sorted
* else call the merge sort recursively
= Combine
e merge the two sorted sequences

MERGE-SORT (A,p,r)

1 ifp<r

then g« L (p+r)/2_
MERGE-SORT(A,p,q)
MERGE-SORT(A,g+1,r)
MERGE(A,p,q.,r)

o ~ W N

To sort A[1..n], invoke MERGE-SORT with
MERGE-SORT(A,1,length(A))

sorted sequence

1 2 2 3 4) 6 6
Pl IS
g 7 Merge N §
2 4) 6 1 2 3 6
Al \ 4 v
/ Merge \\ % \\
// \ / Merge \
4 6 1 3
f \ f\\ f '\\ f \

//Merge \ //Merge \ _/Merge \ _/Merge \
1 3 2

5 2 4 6

initial sequence

Recurrences

Definition —

a recurrence Is an equatlon or

Inequality that describes a function
In terms of Its value on smaller
Inputs

Recurrence for Divide and

Conquer Algorithms
(B(1) - Base case
T(n)=-x (0
af(n/b) + D

/)

Conquer cost Divide cost Combine cost

Analysis of Merge-Sort

Here Is what we got as the running time:

T(n):{ O(1) ifn=1

2T(n/2) + () +6(Nn) 1fn>1

We can ignore the ®(1) factor, as it Is irrelevant
compared to ®(n), and we can rewrite this
recurrence as:

T(n)z{ O(1) ifn=1

2T(n/2) +B() 1fn>1

Recurrence for Merge Sort

(1) forn=1

T(Nn)=
") <L2T(n/2)+®(n) forn>1

* ®(1) represents the running time of the base case.

* The “divide” phase really only involves resetting the lower
and upper bounds of the current subarray, which has almost
no cost associated with It.

e T(n/2) is the cost of each of the “conquer” parts of the
algorithm, and we have two parts, for a cost of 2T(n/2).

e ®(N) Is the cost of the “combine” part, the merge function.

Why Recurrences?

. The complexity of many interesting
algorithms is easily expressed as a
recurrence — especially divide and
conguer algorithms

- The complexity of recursive algorithms Is
readily expressed as a recurrence.

Why solve recurrences?

- To make It easier to compare the
complexity of two algorithms

- To make It easier to compare the
complexity of the algorithm to standard
reference functions.

Example Recurrences for Algorithms

. Insertion sort

1 forn<1

T(n) =+ _
T(n-1)+n otherwise

. Linear search of a list

1 forn<1
T(n)= .
T(n-1)+1 otherwise

Recurrences for Algorithms,
continued

. Binary search
1 forn<1

T(n)=- _
T(n/2) +1 otherwise

“Casual” About Some Detalls

- Boundary conditions
. These are usually constant for small n

. Floors and celilings
. Usually makes no difference in solution

- Usually assume n is an “appropriate” integer
(1.e., a power of 2) and assume that the
function behaves the same way If floors and
cellings were taken into consideration

Merge Sort Assumptions

. The actual recurrence describing the worst-
case running time for merge sort Is:

(O(1) forn<1

T(n) = iT(L”/ZJ) +T(n/2]) +®(n) otherwise

- But we typically assume that n = 2k where k
IS an Integer and use the simpler recurrence.

Methods for Solving Recurrences

. Constructive induction

. lterative substitution
e Recurrence trees

. Master Theorem

Constructive Induction

e Use mathematical induction to derive an
answer

e Steps
1. Guess the form of the solution

2. Use mathematical induction to find
constants or show that they can be found
and to prove that the answer Is correct

Constructive induction

e Goal

 Derive a function of n (or other variables
used to express the size of the problem) that
IS not a recurrence so we can establish an
upper and/or lower bound on the recurrence

* \We may get an exact solution or we may just
get upper or lower bounds on the solution

Constructive Induction

. Suppose T includes a parameternand nis a
natural number (positive integer)

. Instead of proving directly that T holds for all
values of n, prove
- T holds for a base case b (oftenn =1)

- Forevery n > Db, If T holds for n-1, then T holds for
n.

» Assume T holds for n-1

» Prove that T holds for n follows from this
assumption

Example 1

. Glven
1 forn < 1

T(n-1) + n otherwise

. Prove T(n) € O(n?)
- Note that this i1s the recurrence for insertion sort

and we have already shown that this is O(n?) using
other methods

n n(n+ 1)

T(n)= Y=
=1

T(Nn)=-s

cO(n?)

Proof for Example 1

. Guess that the solution for T(n) Is a quadratic
equation

T(n) —an® +bn+c
. Assume this solution holds for n-1
T(n—D=a(n—1)°%+b(n—1)+c
- Now consider the case for n. Begin with the
recurrence for T(n)

T(nN)=T(n—=1)+n

Proof for Ex. 1, continued
TnN)=T(h-1)+n

We assumed that
(n-1)=a(n-1)?*+b(h-1)+c
S0 we substitute this in the above equation:
T(n)=a(n-1)+b(h-1)+c+n
Now let’s multiply this out:
(N-1)?=n?-2n+1,s0
(nN)=an’-2an+a+bn-b+c+n,and
T(n)=an’-2an+bn +n+a-b+c, and
T(n)=an’+(-2a+b +1)n+(a-b+c)

Proof for Ex. 1, continued

\We now can see that
(nN)=an*+(-2a+b +1)n+a-b+c.

We know that a, b, and c are just names for
arbitrary constants, soseta=a,b=(-2a+b + 1),
andc =(a—Db +c).

Now we can calculate a:

b=(-2a+b+1)
O0=-2a+1=1-2a
2a=1

a=1/2

Proof for Ex. 1, continued

And now we can calculate b:
c=(a-b+c)
O=a->b
0=%-D
b=1/2

Proof for Ex. 1 continued

The values for a and b are now constrained, but the value
for c 1s not. However, we now have a more complete
hypothesis, and we can use this new hypothesis and the
definition of the recurrence to get a value for c.

We know that:
T(n)=%n? + ¥%n + ¢
and substituting 0 for n we get
T0)=%0°+ %0 + c=¢
but
T(0) =0 (the case when n=0)
SO
T(0)=c=0

Proof for Ex. 1 continued

We know that:
T(n)=%n? + ¥%n + ¢
Substituting 0 for ¢ we get
T(n)=%n? + ¥%n forn>0
which, in Big-O notation is: O(n?)

Compare this to what we determined to be the running
time of Insertion Sort by a direct analysis of the

algorithm:
n n(n+ 1)

T(n)= Y= cO(n?)
=1

Example 2 — Establishing an Upper Bound

Recurrence : T(n) =4T(n/2) +n
Guess : T(n) €0(n’)
Assumption : n =2 where k is an integer
In this case we wantto prove that T(n) <cn® Vn 2n,
Assume T(n/2) <c(n/2)° Vn =n,
Starting with the recurrence for T (n)
T(n) =4T(n/2) +n
<4c(n/2)’ +n
<1/2cn’ +n

This is not quite whatwe need: T (n) <c(n)’

Ex. 2 — Establishing an Upper Bound

We want to prove that T (n) <cn® vn=>n,

T(n)<1/2cn’ +n
Trick The “trick” Is recognizing
T(n)<1/2cn®+n that If x <y - z then it must

be true that x <y (provided

< 3 3) -y -
<cn®—(»cn”—n) that z is positive).

<cn® Ve>2 andn>1

General heuristic — try to write the expression in the form
< answer you want > - < something greater than 0 >

Ex. 2 — Establishing an Upper Bound

We still need a boundary condition specified. We
have shown that T(n) <cndforall¢>2 and n >
1.

Now select a ¢ value that is large enough to
satisfy a boundary condition. In this case we can
select ¢ = 3 for a boundary condition of n = 1.

Note that we have established an upper bound,

but 1t Is not a tight upper bound. See the next
example.

Ex. 3 — Fallacious Argument

Recurrence: T(n) =4T(n/2) +n
Guess: T(n) €0(n°)
Assumption: n =2 wherek isan integer
In this case we want to provethat T(n) <cn® Vh =n,
AssumeT (n/2) <c(n/2)* Vn=n,
Starting with therecurrencefor T (n)
T(n) =4T(n/2) +n
<4c(n/2)’ +n
<cn’ +n
T (n) €O(n’)
But thisis incorrect, becausecn® +n <cn’ only holds
for n =0 and it must hold for all n greater than the base

Example 3 — Try again

When you get to this point

T(n)<cn®+n

Revise the inductive hypothesis

Heuristic :
When you find yourself in the situation

T (n) << term you want > + < something + >

start over with a new inductive hypothesis in which
you substract a lower order term.

Guess T (n) <¢,n* —c,n

AssumeT (n/2) <c,(n/2)*—c,(n/2)

Starting with recurrence

T(N)=4T(n/2)+n

Ex. 3—Try again, continued

Starting with the recurrence
T(n)=4T(n/2)+n

<4(c,(n/2)°-c,(n/2))+n

<c¢,n°—2c,n+n

<¢,n°—-c,n—(c,n—n)
Now the first two terms are in the correct form and the
last term iIs positive for all valuesof ¢, >1 so
T(n)<c,n’—c,n forallc, >1
Select c, to be large enough to handle the intial conditions.

Boundary Conditions

e Boundary conditions are not usually important
because we don’t need an actual ¢ value (if

polynomially bounded)
« But sometimes it makes a big difference
= Exponential solutions
= Suppose we are searching for a solution to:
T(n) = T(n/2)?
= and we find the partial solution:
T(n)=c"

Boundary Conditions, cont.

If the boundary condition is
T(n)=2
this implies that T (n) € ®(2").
But if the boundary condition is
T(n)=3
this impliesthat T (n) € ®(3"),
and ®(3") =z ®(2").
The results are even moredramaticif T(1) =1
TA)=1=T(N)=601")=001)

Boundary Conditions

The solutions to the recurrences below have very

different upper bounds:
1 forn=1
T(M=1" o, o
>T (n/2)< otherwise
2 f =1
T(M=1" .,
>T (n/2)= otherwise
3 f =1
T(M=1" o,
T (n/2)> otherwise

Iterating the Recurrence

. Called i1terative substitution

- Sometimes referred to as plug and chug.

. In Iterative substitution we substitute the

original form of the recurrence everywhere T
occurs on the right side of the recurrence
equation.

. Repeat as needed until a pattern appears.
. The math can be messy with this method.

- Sometimes we can use this method to get an
estimate that we can use for the substitution
method.

Iterating the Recurrence

Look at the recurrence relation:
[0 ifn=0
T(n) = 4
[T(n-1)+n ifn>0
Substituting n — 1 for n in the relation above we get:
TNn-1)=T(h-2)+(n-1)
Substitute for n — 1 in the original relation:
T(n)=(T(n-2)+(n-1))+n
We know that
TN-2)=T(h-3)+(n-2)
So substitute this for T(n — 2) above:
T(nN)=(Mn-3)+(n-2))+(n-1)+n

Iterating the Recurrence

We see the following pattern:.
T(N)=T(n-1)+n
T(n)=(T(n-2)+(n-1))+n
T(nN)=(Mn-3)+(n-2))+(n-1)+n

TnN)=T(h-(n-2))+2+3+...+(n-2)+(n-1)+n
Tn)=T(h-(h-1))+2+3+...+(n-2)+(n-1)+n
T(N)=T(h-(n-0)) +2+3+...+(n-2)+(n-1)+n
We can rewrite (n— (n—0)) as (n—n) or as (0), thus:
TN)=TO)+1+2+3+...+(n-2)+(n-1)+n
But we know that T(0) = 0 is the base case, so:
T(N)=0+1+2+3+...+(n-2)+(n=-1)+n

Iterating the Recurrence

The summation of
T(N)=0+1+2+3+...+(h-2)+(n=-1)+n
IS
TnN)=(n(n+1)/2)=%n?+%n
which we recognize as O(n?).

Iterating the Recurrence

Let’s look at the recurrence equation for Merge Sort again:
C ifn=1
T(n)_{ 2T(n/2) + cn ifn>1

Let’s substitute 2T(n/2) + cn for T(n/2) in the expression
above:
2T(n/2) + cn = 2(2T((n/2)/2) + c(n/2)) + cn

= 2°T(n/2°) + 2¢n

Let’s substitute 2T(n/2) + cn again:
= 2%(2T((n/2%)/2 + ¢ ((n/2)/2) + 2¢n
= 23T(n/23) + 3cn

What pattern emerges?

Iterating the Recurrence

21T(n/2Y) + 1cn
2°T(n/22) + 2¢n
23T (n/23) + 3cn
l
2'T(n/2") + icn
Assume that n = 2' (n is an integer power of 2); then
| = log,n.
Substituting log,n for I gives:
21091« T(n/n) + log,n * € * n
Remember that a'°9," = nlog 2 so we have
n'og,2« T(n/n) + log,n * ¢ * n

Iterating the Recurrence

n'od,2 is nt or simply n, so we have:
n-T(n/n)+log,n-cC-n
We know that n/n = 1, so we have:
n-T()+log,n-c-n
We know that T(1) is the base case for this recurrence, and
T(n) =cifn=1, sowe have:
n-c+log,n-c-n
Rearranging the right and left sides of the summation
gives:
cen-log,n+c-n

Which is O(n log,n)

Example 4
T(N)=n+4T(n/2)
Start iterating the recurrence
T(N)=n+4(n/2+4T(n/4))
=n+2n+16T(n/4)
Iterate the recurrence again
T(N)=n+2n+16(n/4+4T(n/8))
=Nn+2n+4n+64T (n/8)
We observe that the ith term in the seriesis 2'n

How far do we Iiterate before we reach a boundary condition?

If we uselas the boundary condition, it will be when we reach
n/2'=1

Example 4, continued

When

n/2' =1 theni=Ign

Now, since we know that the ith termis 2'n
we can rewrite the series as

T(N)=n+2n+4n+...+2""nT (1)

log, n log, a

Remember that a =N

T(N)=n+2n+4n+...+n"%n
=N+2n+4n+...4+n°

—n+2n+4n+...+ 29" n 4 n?

T(N)=n+2n+4n+...4+29""n+n°T (1)

Factor out a geometric progression

n n+1

X =1
Zxk — for x 21
i=0 X

T(N)=n°+2'+2%..+2""Y+n*T (1)
lgn
= n[z 1] +®(n%)

2—1
=n(n-1)+ O(n?)
=0(n*) +6(n’)
=0(n%)

Recurrence Trees

. Allow you to visualize the process of
Iterating the recurrence

. Allows you make a good guess for the
substitution method

. Or to organize the bookkeeping for iterating
the recurrence

- Example

T(n)=T(n/4)+T(n/2) + n?

n2 n2
T(n/4) T(n/2)
(n/4)= (n/2)? 5/16 n2

AN

T(n/16) T(n/8) T(n/8) T(n/4) 25/256 n*=(5/16)*n*

Since the values decrease geometrically, the total
IS at most a constant factor more than the largest
term and hence the solution is ®(n?)

Tin) en o

JIN TS

T T T 2y c($)? o5’

ANSVANVAN

TR TG T T TE TE TE TE TE

& ®) (c)
A o’ - en?
d [}z :.‘.2 f{%jj ---------- -n.-]"-. 1_:' {-\.n:

LN /N /N

el e’ el o)’ el e (B (B c(fp) i () en?

iVivAiviy

« 1 9" § § % k = = r = = r @ F @ a4 w w 4 7

Y T() TA) TA) T TO) TC) T4 TC) T TA) ee) TOY TC1) oo @567
T —— S
e

rbor 1

i Total: (Hn*)

Figure 4.1 The construction of a recursion iree for the recumence Tin) = ITin/4) + cnt.
Part {a} shows Tin), which is progressively expanded in (Bl=(d) 1o form the reeursion tree, The
fully expanded wree in part (@) hes height bogy (it has logg n 4 1 levels),

CF s s ijis- ch

A / \
1. L 72n * ‘
0 C() i e
logs , 1 / \ / \
C (%) ¢ (%’) C (%"{) C (d’:T”) seennananafie- CH
P I PR J L
i \ f \ ' ! : ‘
! \ ! L P X p '
Y

Total: O(nlgn)

Figure 4.2 A recursion tree for the recurrence T (n) = T(n/3) + T (2n/3) + cn.

FR) s s] - fn)

A
/¢>\
fn/b) fin/b) F /b)Y s @ f (11/4)
i e)
log, n
f/b)fnfb*y-f (nfb*) f(n/bD)f(n/BY-f(n/b?) fin/b)f (/b)f (/D7) i a* f (1 /b7
Y e1) 6) 8(1) 8(1) 8(1) O(1) &(1) O @) O(1) .- O(1) O(1) (1) wiin O (n'%4)
e — S —— I
”Eugbu
log, n=1
Total: @ (n'0%) + Z al fin/b')
=0

Figure 4.3 The recursion tree generated by T(n) = aT(n/b) + f(n). The tree is a complete a-ary
tree with 7198 2 leaves and height logy, nn. The cost of each level is shown at the right, and their sum
Is given in equation (4.6).

’*l f(ﬂ} ... - f{n)

Sfny) fny) flny) - e af(ny)

4 AN AN A

f{ﬂz) flnz2) = f(n) flna) fFma) - f(na) flna) f(na) = fnz) weiee @* f(ny)

Y 0() 0(1) O(1) 6(1) O1) B(1) O(1) B(1) O(1) (1) -+ A1) O(I) O(1) vt G (1804

e ~ R
@{nlng,,a]
[log, n]—1
Total: ©@(n'*%%) + 3" a/ f(n))
J=0

Figure 4.4 The recursion tree generated by T'(n) = aT ([n/b])+ f(n). The recursive argument j
is given by equation (4.12).

The master method

Provides a cookbook method for solving
recurrences of the form

T(n)=aT(n/b)+ f(n)

wherea>1 and b > 1 and f(n) Is an
asymptotically positive function.

Divide and Conquer Algorithms

. The form of the master theorem Is very
convenient because divide and conguer
algorithms have recurrences of the form

T(n)=aT(n/b)+D(n)+C(n)

where
a 1s the number of subproblems at each steg
1/b 1sthe size of each subproblem
D(n) is the cost of dividing into subproblem:

C(n) iIs the cost of combining the solutions t
subproblems

Form of the Master Theorem

» Combines D(n) and C(n) into f(n)
. For example, in Merge-Sort

(0 (1) ifn=1
T(n) =1
| 2T(n/2) + © (n) ifn>1la=2
a=2,b=2
f(n) = ©(n)

- We will ignore floors and ceilings. The proof
of the Master Theorem includes a proof that
this 1s ok.

Form of the Master Theorem
» Combines D(n) and C(n) into f(n)
. For example, in Merge-Sort
o(1) forn=1
2T(n/2) +©(n) forn>1

(

T(n) =+

a=2,b=2

f(n) = ©(n)
We will ignore floors and ceilings. The proof of the
Master Theorem includes a proof that this is ok.

Form of the Master Theorem

- The Master Method Is used for recurrence equations

of the form:

-

C forn<d

T(n)=
(") <\aT(n/b)+ f(n) forn>1

Master theorem

Leta>1 and b > 1 be constants, let f(n) be a
function, and let T(n) be defined on the non-
negative integers by the recurrence

T(n) = aT(n/b) + f(n)
where we Interpret n/b to mean either the floor or
ceiling of n/b. Then T(n) can be bounded
asymptotically as follows:

Master theorem

Casel:if f(n)= O(n"’gba‘g)for some constant £ > 0, then
T(n) = @(n'ogba)

Case 2:if f(n) = @(n"’gba), then
T(n) = @(n'Ogba g n)

Case 3:if f(n) = Q(n'Ogb e)for some constant ¢ > 0, and

If af (n/b) <cf (n) for some constant c <land all
sufficiently large n, then

T(n)=0(f(n))

3 cases

1. If there is a small constant € > 0, such that
f (n) _ O(nlogb a—¢)
then T(n) Is

®(nlogba)

Here f(n) Is polynomially smaller than the
special function n log, a

3 cases

2. If
f(n)=0(n"%?)
then T(n) is
@(n"’gba g n)

Here f(n) is asymptotically equal to the special
function N log, a

3 cases

3. If there are small constantse >0andc <1,
such that af(n/b) < cf(n)

f(n) ="

for all sufficiently large n, then T(n) Is

o(f(n))

Here f(n) i1s polynomially larger than the special
function N log, a

What does the master theorem say?

Compare two functions:
f(n) and n"%®

When f(n) growsasymptotically slower (Casel)
T(n)=0(n""*)

When the growth rates are the same (Case 2)
T(n)=0(f (n)lgn)=0(n"**Ign)

When f (n) grows asymptotically faster (Case 3)
T(n)=0(f(n))

Using the Master Method

Using the master method, solve the recurrence
T(n) =4T(n/2) + n

Remember the form the recurrence must have:
T(n) = aT(n/b) + f(n)

Herea=4,b=2,and f(n) =n
Plug these values into our special function n'*%?

and we get n'°%2* or = n2. Does f(n) = O(n%%)?
Yes, If e = 1. Sothisis Case 1, and

T(n)=0(n""*)=0(n?)

Using the Master Method

How do we know that this 1s Case 1, and not Case
2 or Case 3? Look at f(n). Does:

f(n)= O(n"’gba‘g) yes
f(n)=0(n">?) no
£ (n) _ Q(nlogb a+g) no

Using the Master Method
T(nN)=64T(n/4)+n
a=64 b=4 f(n)=n

r]Iogba _ r]Iog464 _ n3 _ @(HB)

Since f (n) =0(n°) where e = 2,
caselappliesand
T(n) = O(n°)

Using the Master Method

Using the master method, solve the recurrence
T(n) =T(2n/3) + 1

Remember the form the recurrence must have:
T(n) = aT(n/b) + f(n)

Herea=1,b=3/2,andf(n)=1

Plug these values into our special function

and we get n'*%/2' or = n® = 1. Does f(n) = O(1)?
Yes. So this is Case 2, and

T(n) =0O(1sIgn) =06(lgn)

Using the Master Method

T(nN)=T(3n/4)+1
a=1 b=4/3 f(n)=1

rlIogba _ r.Ilog4,31 _ r.IO :1

Case 2 applies and
T(n) =6(lgn)

Using the Master Method

Using the master method, solve the recurrence
T(n) =T(n/3) + n

Remember the form the recurrence must have:
T(n) = aT(n/b) + f(n)

Herea=1,b=3,and f(n) =n

Plug these values into our special function

and we get n"°%' or =n%=1. Does f(n) = Q(n°*)?
Yes; € =1, and af(n/b) = n/3 = (1/3)f(n), giving ¢ =
1/3. So this is Case 3, and

T(n) = 6(t(n)) = 6(n)

Using the Master Method

T(N)=3T(n/4)+nlgn
a=3 b=4 f(n)=nlgn

nIogba _ r]Iog43 _ O(n0.793)

Since f (n) = Q(n'9%°"%),
case 3 applies and
T(n)=6(NnIgn)

Conclusion

- We talked about:

v'The substitution method (2 types)
v'The recursion-tree method

v The master method

- Be able to solve recurrences using all
three of these methods.

The Master Theorem

Leta>1and b >1 beconstants, let f (n) be a function,
and let T(n) be defined on the nonegative integers by the
recurrence T(n)=aT(n/b)+ f(n)

where n/b can be either | n/b |or [n/b |

Then T(n) can be bounded asymptotically as follows:

1. If f(n)=0(n"%**)for some constant & >0,
then T (n) = ®(n""%*?)
2. If f(n)=0(n"*?),thenT(n) =O(n"**Ign)
3. If f(n)=Q(n"%>*)for some constant ¢ > 0, and
If af (n/b) <cf (n) for some constant ¢ <1 and all
sufficiently large n, then T (n) = ©(f(n))

	Chapter 4�Divide and Conquer
	Chapter 4 Topics
	Designing Algorithms
	Divide and Conquer
	Merge Sort
	Slide Number 6
	Slide Number 7
	Recurrences
	Recurrence for Divide and Conquer Algorithms
	Analysis of Merge-Sort
	Recurrence for Merge Sort
	Why Recurrences?
	Why solve recurrences?
	Example Recurrences for Algorithms
	Recurrences for Algorithms,�continued
	“Casual” About Some Details
	Merge Sort Assumptions
	Methods for Solving Recurrences
	Constructive Induction
	Constructive induction
	Constructive Induction
	Example 1
	Proof for Example 1
	Proof for Ex. 1, continued
	Proof for Ex. 1, continued
	Proof for Ex. 1, continued
	Proof for Ex. 1 continued
	Proof for Ex. 1 continued
	Example 2 – Establishing an Upper Bound
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Boundary Conditions
	Boundary Conditions, cont.
	Boundary Conditions
	Iterating the Recurrence
	Iterating the Recurrence
	Iterating the Recurrence
	Iterating the Recurrence
	Iterating the Recurrence
	Iterating the Recurrence
	Iterating the Recurrence
	Example 4
	Example 4, continued
	Slide Number 47
	Recurrence Trees
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	The master method
	Divide and Conquer Algorithms
	Form of the Master Theorem
	Form of the Master Theorem
	Form of the Master Theorem
	Master theorem
	Master theorem
	3 cases
	3 cases
	3 cases
	What does the master theorem say?
	Using the Master Method
	Using the Master Method
	Using the Master Method
	Using the Master Method
	Using the Master Method
	Using the Master Method
	Slide Number 71
	Conclusion
	Slide Number 73

