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Lecture 4 Topics

• The substitution method
• The recursion-tree method
• The master method



Designing Algorithms

• There are a number of design paradigms for
algorithms that have proven useful for many
types of problems

• Insertion sort – incremental approach
• Other examples of design approaches

• divide and conquer
• greedy algorithms
• dynamic programming



Divide and Conquer
• A good divide and conquer algorithm generally 

implies an easy recursive version of the 
algorithm

• Three steps
• Divide the problem into a number of subproblems
• Conquer the subproblems by solving them 

recursively.  When the subproblem size is small 
enough, just solve the subproblem.

• Combine - the solutions of subproblems to form  the 
solution of the original problem



Merge Sort

 Divide
• divide an n-element sequence into two n/2

element sequences
 Conquer

• if the resulting list is of length 1 it is sorted
• else call the merge sort recursively

 Combine
• merge the two sorted sequences



MERGE-SORT (A,p,r)
1 if p < r
2 then q← (p+r)/2
3 MERGE-SORT(A,p,q)
4 MERGE-SORT(A,q+1,r)
5 MERGE(A,p,q,r)

To sort A[1..n], invoke MERGE-SORT with  
MERGE-SORT(A,1,length(A))
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Recurrences

Definition –
a recurrence is an equation or 
inequality that describes a function 
in terms of its value on smaller 
inputs



Recurrence for Divide and 
Conquer Algorithms
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Analysis of Merge-Sort
Here is what we got as the running time:

( ) {=nT Θ(1) if n = 1

2T(n/2) + Θ(1) + Θ(n)    if n > 1

We can ignore the Θ(1) factor, as it is irrelevant 
compared to Θ(n), and we can rewrite this 
recurrence as:

( ) {=nT Θ(1) if n = 1
2T(n/2) + Θ(n)    if n > 1



Recurrence for Merge Sort
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• Θ(1) represents the running time of the base case.
• The “divide” phase really only involves resetting the lower 
and upper bounds of the current subarray, which has almost 
no cost associated with it.
• T(n/2) is the cost of each of the “conquer” parts of the 
algorithm, and we have two parts, for a cost of 2T(n/2).
• Θ(n) is the cost of the “combine” part, the merge function.



Why Recurrences?

• The complexity of many interesting 
algorithms is easily expressed as a 
recurrence – especially divide and 
conquer algorithms

• The complexity of recursive algorithms is 
readily expressed as a recurrence.



Why solve recurrences?

• To make it easier to compare the 
complexity of two algorithms

• To make it easier to compare the 
complexity of the algorithm to standard 
reference functions.



Example Recurrences for Algorithms

• Insertion sort

• Linear search of a list
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Recurrences for Algorithms,
continued

• Binary search



 ≤

=
 otherwise1 + T(n/2)

1 n for 1
)(nT



“Casual” About Some Details

• Boundary conditions
• These are usually constant for small n

• Floors and ceilings
• Usually makes no difference in solution
• Usually assume n is an “appropriate” integer

(i.e., a power of 2) and assume that the
function behaves the same way if floors and
ceilings were taken into consideration



Merge Sort Assumptions

• The actual recurrence describing the worst-
case running time for merge sort is:

• But we typically assume that n = 2k where k 
is an integer and use the simpler recurrence.
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Methods for Solving Recurrences

• Constructive induction 
• Iterative substitution

• Recurrence trees
• Master Theorem



Constructive Induction

• Use mathematical induction to derive an 
answer

• Steps
1.  Guess the form of the solution
2.  Use mathematical induction to find 

constants or show that they can be found 
and to prove that the answer is correct



Constructive induction
• Goal

• Derive a function of n (or other variables 
used to express the size of the problem) that 
is not a recurrence so we can establish an 
upper and/or lower bound on the recurrence

• We may get an exact solution or we may just 
get upper or lower bounds on the solution



Constructive Induction
• Suppose T includes a parameter n and n is a 

natural number (positive integer)
• Instead of proving directly that T holds for all 

values of n, prove
– T holds for a base case b (often n = 1)
– For every n > b, if T holds for n-1, then T holds for 

n.  
» Assume T holds for n-1
» Prove that T holds for n follows from this 

assumption



Example 1

• Given

• Prove T(n) ∈ O(n2)
• Note that this is the recurrence for insertion sort 

and we have already shown that this is O(n2) using 
other methods

    
T(n) =

1 for n ≤  1
T(n - 1) +  n otherwise

 
 
 

  

    
T(n) = i =

n(n + 1)
2i=1

n
∑ ∈O(n2 )



Proof for Example 1
• Guess that the solution for T(n) is a quadratic 

equation 

• Assume this solution holds for n-1

• Now consider the case for n.  Begin with the 
recurrence for T(n)

    T(n) = an2 + bn + c

    T(n − 1) = a(n − 1)2 + b(n − 1) + c

    

T(n) = T (n − 1) + n



Proof for Ex. 1, continued
T(n) = T(n – 1) + n
We assumed that

T(n – 1) = a(n - 1)2 + b(n – 1) + c
so we substitute this in the above equation:

T(n) = a(n - 1)2 + b(n – 1) + c + n
Now let’s multiply this out:

(n – 1)2 = n2 – 2n + 1, so
T(n) = an2 – 2an + a + bn – b + c + n, and 
T(n) = an2 – 2an + bn  + n + a – b + c, and
T(n) = an2 + (-2a + b  + 1)n + (a – b + c)



Proof for Ex. 1, continued
We now can see that 
T(n) = an2 + (-2a + b  + 1)n + a – b + c.
We know that a, b, and c are just names for 
arbitrary constants, so set a = a, b = (-2a + b + 1), 
and c = (a – b + c).
Now we can calculate a:

b = (-2a + b + 1)
0 = -2a + 1 = 1 – 2a
2a = 1
a = 1/2



Proof for Ex. 1, continued
And now we can calculate b:

c = (a – b + c)
0 = a – b
0 = ½ - b
b = 1/2



Proof for Ex. 1 continued
The values for a and b are now constrained, but the value 
for c is not.  However, we now have a more complete 
hypothesis, and we can use this new hypothesis and the 
definition of the recurrence to get a value for c.
We know that:

T(n) = ½ n2 +  ½ n  +  c
and substituting 0 for n we get

T(0) = ½ 02 +  ½ 0  +  c =  c
but

T(0) = 0  (the case when n = 0)
so

T(0) = c = 0



Proof for Ex. 1 continued

We know that:
T(n) = ½ n2 +  ½ n  +  c

Substituting 0 for c we get
T(n) = ½ n2 +  ½ n  for n ≥ 0

which, in Big-O notation is: O(n2)

Compare this to what we determined to be the running 
time of Insertion Sort by a direct analysis of the 
algorithm:

    
T(n) = i =

n(n + 1)
2i=1

n
∑ ∈O(n2 )



Example 2 – Establishing an Upper Bound
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Ex. 2 – Establishing an Upper Bound
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The “trick” is recognizing 
that if x ≤ y - z then it must 
be true that x ≤ y (provided 
that z is positive).



Ex. 2 – Establishing an Upper Bound

We still need a boundary condition specified.  We 
have shown that T(n) ≤ cn3 for all c > 2 and n ≥ 
1.  

Now select a c value that is large enough to 
satisfy a boundary condition.  In this case we can 
select c = 3 for a boundary condition of n = 1.

Note that we have established an upper bound, 
but it is not a tight upper bound.  See the next 
example.



Ex. 3 – Fallacious Argument
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Example 3 – Try again
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Ex. 3–Try again, continued
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Boundary Conditions
• Boundary conditions are not usually important 

because we don’t need an actual c value (if 
polynomially bounded)

• But sometimes it makes a big difference
 Exponential solutions
 Suppose we are searching for a solution to:

T(n) = T(n/2)2

 and we find the partial solution: 
T(n) = cn



Boundary Conditions, cont.
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Boundary Conditions
The solutions to the recurrences below have very 

different upper bounds:

    

T(n) =
1 for n = 1
T (n/2)2 otherwise

 
 
 

  

T(n) =
2 for n = 1
T (n/2)2 otherwise

 
 
 

  

T(n) =
3 for n = 1
T (n/2)2 otherwise

 
 
 

  



Iterating the Recurrence
• Called iterative substitution
• Sometimes referred to as plug and chug.
• In iterative substitution we substitute the 

original form of the recurrence everywhere T 
occurs on the right side of the recurrence 
equation.

• Repeat as needed until a pattern appears. 
• The math can be messy with this method.
• Sometimes we can use this method to get an 

estimate that we can use for the substitution 
method.



Iterating the Recurrence
Look at the recurrence relation:

 0 if n = 0
T(n) =  

 T(n - 1) + n if n > 0

Substituting n – 1 for n in the relation above we get:
T(n - 1) = T(n – 2) + (n – 1)

Substitute for n – 1 in the original relation:
T(n) = (T(n – 2) + (n – 1)) + n

We know that
T(n – 2) = T(n – 3) + (n – 2)

So substitute this for T(n – 2) above:
T(n) = (T(n – 3) + (n – 2)) + (n – 1) + n



Iterating the Recurrence
We see the following pattern:

T(n) = T(n - 1) + n
T(n) = (T(n – 2) + (n – 1)) + n
T(n) = (T(n – 3) + (n – 2)) + (n – 1) + n
. . .
T(n) = T(n – (n – 2)) + 2 + 3 + … + (n – 2) + (n – 1) + n
T(n) = T(n – (n – 1)) + 2 + 3 + … + (n – 2) + (n – 1) + n 
T(n) = T(n – (n - 0))  + 2 + 3 + … + (n – 2) + (n – 1) + n

We can rewrite (n – (n – 0)) as (n – n) or as (0), thus:
T(n) = T(0) + 1 + 2 + 3 + … + (n – 2) + (n – 1) + n

But we know that T(0) = 0 is the base case, so:
T(n) = 0 + 1 + 2 + 3 + … + (n – 2) + (n – 1) + n



Iterating the Recurrence
The summation of

T(n) = 0 + 1 + 2 + 3 + … + (n – 2) + (n – 1) + n
is 

T(n) = (n (n + 1) /2) = ½ n2 + ½ n
which we recognize as O(n2).



Iterating the Recurrence
Let’s look at  the recurrence equation for Merge Sort again:

( ) {=nT c if n = 1 
2T(n/2) + cn if n > 1

Let’s substitute 2T(n/2) + cn for T(n/2) in the expression 
above:
2T(n/2) + cn = 2(2T((n/2)/2) + c(n/2)) + cn

= 22T(n/22) + 2cn

Let’s substitute 2T(n/2) + cn  again:
= 22(2T((n/22)/2 + c ((n/2)/2) + 2cn
= 23T(n/23) + 3cn

What pattern emerges?



Iterating the Recurrence

21T(n/21) + 1cn
22T(n/22) + 2cn
23T(n/23) + 3cn

↓
2iT(n/2i) + icn

Assume that n = 2i (n is an integer power of 2); then 
i = log2n.  
Substituting log2n for i gives: 

2log
2
n  T(n/n) + log2n  c  n

Remember that alog
b

n = nlog
b
a, so we have

nlog
2
2  T(n/n) + log2n  c  n



Iterating the Recurrence
nlog

2
2 is n1 or simply n, so we have:

n  T(n/n) + log2n  c  n
We know that n/n = 1, so we have:

n  T(1) + log2n  c  n
We know that T(1) is the base case for this recurrence, and 
T(n) = c if n = 1, so we have:

n  c + log2n  c  n
Rearranging the right and left sides of the summation 
gives:

c  n  log2n + c  n 

Which is O(n log2n)



Example 4
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Example 4, continued
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Recurrence Trees
• Allow you to visualize the process of

iterating the recurrence
• Allows you make a good guess for the

substitution method
• Or to organize the bookkeeping for iterating

the recurrence
• Example

    T(n) = T (n / 4) + T (n / 2) + n2



n2

T(n/4)      T(n/2)

n2

(n/4)2 (n/2)2

T(n/16)   T(n/8)   T(n/8)  T(n/4)

n2

5/16 n2

25/256 n2=(5/16)2n2

Since the values decrease geometrically, the total 
is at most a constant factor more than the largest 
term and hence the solution is Θ(n2)











The master method

Provides a cookbook method for solving 
recurrences of the form 

where a ≥ 1 and b > 1 and f(n) is an 
asymptotically positive function.

)()/()( nfbnaTnT +=



Divide and Conquer Algorithms

• The form of the master theorem is very 
convenient because divide and conquer 
algorithms have recurrences of the form

    

T(n) = aT(n/ b) + D(n) + C(n)
where  
     a  is the number of subproblems at each step
    1/ b   is the size of each subproblem
    D(n) is the cost of dividing into subproblems
    C(n) is the cost of combining the solutions to
           subproblems 



Form of the Master Theorem
• Combines D(n) and C(n) into f(n)
• For example, in Merge-Sort

 Θ (1) if n = 1
T(n) = 

 2T(n/2) + Θ (n) if n > 1a = 2

a = 2, b = 2
f(n) = Θ(n)

• We will ignore floors and ceilings.  The proof
of the Master Theorem includes a proof that
this is ok.



Form of the Master Theorem
• Combines D(n) and C(n) into f(n)
• For example, in Merge-Sort

( )
( )




>Θ
=Θ

=
1 n for n + 2T(n/2)
1 n for 1

)(nT

a = 2, b = 2
f(n) = Θ(n)

We will ignore floors and ceilings.  The proof of the 
Master Theorem includes a proof that this is ok.



Form of the Master Theorem

• The Master Method is used for recurrence equations 
of the form:
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Master theorem
Let a ≥ 1 and b > 1 be constants, let f(n) be a 
function, and let T(n) be defined on the non-
negative integers by the recurrence

T(n) = aT(n/b) + f(n)
where we interpret n/b to mean either the floor or 
ceiling of n/b.  Then T(n) can be bounded 
asymptotically as follows:



Master theorem
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3 cases
1.  If there is a small constant ε > 0, such that

then T(n) is

( ) ( )ε−= abnOnf log

( )abnlogΘ

Here f(n) is polynomially smaller than the 
special function abnlog



3 cases
2.  If 

then T(n) is

( ) ( )abnnf logΘ=

( )nn ab lglogΘ

Here f(n) is asymptotically equal to the special 
function abnlog



3 cases
3.  If there are small constants ε > 0 and c < 1, 
such that af(n/b) ≤ cf(n) 

for all sufficiently large n, then T(n) is

( ) ( )ε+Ω= abnnf log

( )( )nfΘ

Here f(n) is polynomially larger than the special 
function  abnlog



What does the master theorem say?
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Using the Master Method
Using the master method, solve the recurrence 

T(n) = 4T(n/2) + n
Remember the form the recurrence must have:

T(n) = aT(n/b) + f(n)
Here a = 4 , b = 2 , and f(n) = n
Plug these values into our special function
and we get            or = n2.  Does f(n) = O(n2-ε)?
Yes, if ε = 1.  So this is Case 1, and

abnlog

4log2n

( ) ( ) ( )24log2 nnnT Θ=Θ=



Using the Master Method
How do we know that this is Case 1, and not Case 
2 or Case 3?  Look at f(n).  Does: 

yes

no

no

( ) ( )ε−= abnOnf log

( ) ( )abnnf logΘ=

( ) ( )ε+Ω= abnnf log



Using the Master Method

)(n=T(n)
and applies 1 case

 2,=   where)( )( Since

)(
=)(      4      64

)4/(64)(

3

3

3364loglog 4

Θ

=

Θ===

==
+=

εnOnf

nnnn
nnfba

nnTnT

ab



Using the Master Method
Using the master method, solve the recurrence 

T(n) = T(2n/3) + 1
Remember the form the recurrence must have:

T(n) = aT(n/b) + f(n)
Here a = 1 , b = 3/2 , and f(n) = 1
Plug these values into our special function
and we get            or = n0 = 1.  Does f(n) = Θ(1)?
Yes.  So this is Case 2, and

T(n) = Θ(1• lg n) = Θ(lg n)

1log 2/3n
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Using the Master Method
Using the master method, solve the recurrence 

T(n) = T(n/3) + n
Remember the form the recurrence must have:

T(n) = aT(n/b) + f(n)
Here a = 1 , b = 3 , and f(n) = n
Plug these values into our special function
and we get            or = n0 = 1.  Does f(n) = Ω(n0+ε)?
Yes; ε = 1, and af(n/b) = n/3 = (1/3)f(n), giving c = 
1/3.  So this is Case 3, and

T(n) = Θ(f(n)) = Θ(n)

1log3n
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Using the Master Method



Conclusion

• We talked about:
The substitution method (2 types)
The recursion-tree method
The master method

• Be able to solve recurrences using all 
three of these methods.
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The Master Theorem
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