
Lecture 4
Divide and Conquer

Sultan ALPAR
associate professor, IITU

s.alpar@iitu.edu.kz

Lecture 4 Topics

• The substitution method
• The recursion-tree method
• The master method

Designing Algorithms

• There are a number of design paradigms for
algorithms that have proven useful for many
types of problems

• Insertion sort – incremental approach
• Other examples of design approaches

• divide and conquer
• greedy algorithms
• dynamic programming

Divide and Conquer
• A good divide and conquer algorithm generally

implies an easy recursive version of the
algorithm

• Three steps
• Divide the problem into a number of subproblems
• Conquer the subproblems by solving them

recursively. When the subproblem size is small
enough, just solve the subproblem.

• Combine - the solutions of subproblems to form the
solution of the original problem

Merge Sort

 Divide
• divide an n-element sequence into two n/2

element sequences
 Conquer

• if the resulting list is of length 1 it is sorted
• else call the merge sort recursively

 Combine
• merge the two sorted sequences

MERGE-SORT (A,p,r)
1 if p < r
2 then q← (p+r)/2
3 MERGE-SORT(A,p,q)
4 MERGE-SORT(A,q+1,r)
5 MERGE(A,p,q,r)

To sort A[1..n], invoke MERGE-SORT with
MERGE-SORT(A,1,length(A))

1 2 2 3 4 5 6 6

2 4 5 6 1 2 3 6

2 5 4 6 1 3 2 6

5 2 4 6 1 3 2 6

Merge

Merge Merge

Merge Merge Merge Merge

initial sequence

sorted sequence

Recurrences

Definition –
a recurrence is an equation or
inequality that describes a function
in terms of its value on smaller
inputs

Recurrence for Divide and
Conquer Algorithms

()
() ()




++
=

nCn DaT(n/b)
nT

1Θ
)(

Base case

Conquer cost Divide cost Combine cost

Analysis of Merge-Sort
Here is what we got as the running time:

() {=nT Θ(1) if n = 1

2T(n/2) + Θ(1) + Θ(n) if n > 1

We can ignore the Θ(1) factor, as it is irrelevant
compared to Θ(n), and we can rewrite this
recurrence as:

() {=nT Θ(1) if n = 1
2T(n/2) + Θ(n) if n > 1

Recurrence for Merge Sort

()
()




>Θ
=Θ

=
1 n for n + 2T(n/2)
1 n for 1

)(nT

• Θ(1) represents the running time of the base case.
• The “divide” phase really only involves resetting the lower
and upper bounds of the current subarray, which has almost
no cost associated with it.
• T(n/2) is the cost of each of the “conquer” parts of the
algorithm, and we have two parts, for a cost of 2T(n/2).
• Θ(n) is the cost of the “combine” part, the merge function.

Why Recurrences?

• The complexity of many interesting
algorithms is easily expressed as a
recurrence – especially divide and
conquer algorithms

• The complexity of recursive algorithms is
readily expressed as a recurrence.

Why solve recurrences?

• To make it easier to compare the
complexity of two algorithms

• To make it easier to compare the
complexity of the algorithm to standard
reference functions.

Example Recurrences for Algorithms

• Insertion sort

• Linear search of a list



 ≤

=
otherwisen + 1)-T(n

1 n for 1
)(nT



 ≤

=
otherwise1 + 1)-T(n

1 n for 1
)(nT

Recurrences for Algorithms,
continued

• Binary search



 ≤

=
 otherwise1 + T(n/2)

1 n for 1
)(nT

“Casual” About Some Details

• Boundary conditions
• These are usually constant for small n

• Floors and ceilings
• Usually makes no difference in solution
• Usually assume n is an “appropriate” integer

(i.e., a power of 2) and assume that the
function behaves the same way if floors and
ceilings were taken into consideration

Merge Sort Assumptions

• The actual recurrence describing the worst-
case running time for merge sort is:

• But we typically assume that n = 2k where k
is an integer and use the simpler recurrence.

   



Θ
≤Θ

=
otherwise(n) +)n/2T(+)n/2T(

1 n for)1(
)(nT

Methods for Solving Recurrences

• Constructive induction
• Iterative substitution

• Recurrence trees
• Master Theorem

Constructive Induction

• Use mathematical induction to derive an
answer

• Steps
1. Guess the form of the solution
2. Use mathematical induction to find

constants or show that they can be found
and to prove that the answer is correct

Constructive induction
• Goal

• Derive a function of n (or other variables
used to express the size of the problem) that
is not a recurrence so we can establish an
upper and/or lower bound on the recurrence

• We may get an exact solution or we may just
get upper or lower bounds on the solution

Constructive Induction
• Suppose T includes a parameter n and n is a

natural number (positive integer)
• Instead of proving directly that T holds for all

values of n, prove
– T holds for a base case b (often n = 1)
– For every n > b, if T holds for n-1, then T holds for

n.
» Assume T holds for n-1
» Prove that T holds for n follows from this

assumption

Example 1

• Given

• Prove T(n) ∈ O(n2)
• Note that this is the recurrence for insertion sort

and we have already shown that this is O(n2) using
other methods

T(n) =

1 for n ≤ 1
T(n - 1) + n otherwise





 

T(n) = i =

n(n + 1)
2i=1

n
∑ ∈O(n2)

Proof for Example 1
• Guess that the solution for T(n) is a quadratic

equation

• Assume this solution holds for n-1

• Now consider the case for n. Begin with the
recurrence for T(n)

 T(n) = an2 + bn + c

 T(n − 1) = a(n − 1)2 + b(n − 1) + c

T(n) = T (n − 1) + n

Proof for Ex. 1, continued
T(n) = T(n – 1) + n
We assumed that

T(n – 1) = a(n - 1)2 + b(n – 1) + c
so we substitute this in the above equation:

T(n) = a(n - 1)2 + b(n – 1) + c + n
Now let’s multiply this out:

(n – 1)2 = n2 – 2n + 1, so
T(n) = an2 – 2an + a + bn – b + c + n, and
T(n) = an2 – 2an + bn + n + a – b + c, and
T(n) = an2 + (-2a + b + 1)n + (a – b + c)

Proof for Ex. 1, continued
We now can see that
T(n) = an2 + (-2a + b + 1)n + a – b + c.
We know that a, b, and c are just names for
arbitrary constants, so set a = a, b = (-2a + b + 1),
and c = (a – b + c).
Now we can calculate a:

b = (-2a + b + 1)
0 = -2a + 1 = 1 – 2a
2a = 1
a = 1/2

Proof for Ex. 1, continued
And now we can calculate b:

c = (a – b + c)
0 = a – b
0 = ½ - b
b = 1/2

Proof for Ex. 1 continued
The values for a and b are now constrained, but the value
for c is not. However, we now have a more complete
hypothesis, and we can use this new hypothesis and the
definition of the recurrence to get a value for c.
We know that:

T(n) = ½ n2 + ½ n + c
and substituting 0 for n we get

T(0) = ½ 02 + ½ 0 + c = c
but

T(0) = 0 (the case when n = 0)
so

T(0) = c = 0

Proof for Ex. 1 continued

We know that:
T(n) = ½ n2 + ½ n + c

Substituting 0 for c we get
T(n) = ½ n2 + ½ n for n ≥ 0

which, in Big-O notation is: O(n2)

Compare this to what we determined to be the running
time of Insertion Sort by a direct analysis of the
algorithm:

T(n) = i =

n(n + 1)
2i=1

n
∑ ∈O(n2)

Example 2 – Establishing an Upper Bound

3)()(:Guess
)2/(4)(:Recurrence

nOnT
nnTnT

3

3

3

0
3

0
3

)()(:needwhat wequitenot isThis
2/1

)2/(4
)2/(4)(

)(for recurrencewith theStarting
)2/()2/(Assume

)(that provewant towecaseIn this
integeran iswhere2:Assumption

ncnT
ncn

nnc
nnTnT

nT
nnncnT

nncnnT
kn k

≤

+≤

+≤

+=

≥∀≤

≥∀≤

=

∈

+=

Ex. 2 – Establishing an Upper Bound

>0an greater th something< - >you wantanswer <
form in the expression the writetry to–heuristic General

1 and 2
)(

2/1)(
Trick

2/1)(
)(that prove want toWe

3

3
2

13

3

3
0

3

>>∀≤

−−≤

+≤

+≤

≥∀≤

nccn
ncncn

ncnnT

ncnnT
nncnnT

The “trick” is recognizing
that if x ≤ y - z then it must
be true that x ≤ y (provided
that z is positive).

Ex. 2 – Establishing an Upper Bound

We still need a boundary condition specified. We
have shown that T(n) ≤ cn3 for all c > 2 and n ≥
1.

Now select a c value that is large enough to
satisfy a boundary condition. In this case we can
select c = 3 for a boundary condition of n = 1.

Note that we have established an upper bound,
but it is not a tight upper bound. See the next
example.

Ex. 3 – Fallacious Argument

)()(:Guess
)2/(4)(:Recurrence

2nOnT
nnTnT

basean thegreater thallfor holdmust it and0for
holdsonly becauseincorrect,isBut this

)()(

)2/(4
)2/(4)(

)(for recurrencewith theStarting
)2/()2/(Assume

)(that provewant towecaseIn this
integeran iswhere2:Assumption

22

2

2

2

0
2

0
2

nn
cnncn

nOnT
ncn

nnc
nnTnT

nT
nnncnT

nncnnT
kn k

≤
≤+

∈∴

+≤

+≤

+=

≥∀≤

≥∀≤

=

∈

+=

Example 3 – Try again

)2/(4)(

recurrence with Starting
)2/()2/()2/(Assume

)(Guess
.order termlower asubstract you

in which hypothesis inductive new aover with start
>+ something< + >you want term<)(

situation in the yourself findyou When
:Heuristic

hypothesis inductive theRevise
)(

point thisget toyou When

2
2

1

2
2

1

2

nnTnT

ncncnT
ncncnT

nT

ncnnT

+=

−≤

−≤

≤

+≤

Ex. 3–Try again, continued

 .conditions intial thehandle enough to large be toSelect
1 allfor)(

so 1 of valuesallfor positive is last term
 theand formcorrect in the are termsfirst two theNow

)(
2

))2/()2/(4(
)2/(4)(

recurrence with theStarting

1

22
2

1

2

22
2

1

2
2

1

2
2

1

c
cncncnT

c

nncncnc
nncnc

nncnc
nnTnT

≥−≤

≥

−−−≤

+−≤

+−≤

+=

Boundary Conditions
• Boundary conditions are not usually important

because we don’t need an actual c value (if
polynomially bounded)

• But sometimes it makes a big difference
 Exponential solutions
 Suppose we are searching for a solution to:

T(n) = T(n/2)2

 and we find the partial solution:
T(n) = cn

Boundary Conditions, cont.

)1()1()(1)1(
1 = T(1) if dramatic moreeven are results The

).2()3(and
),3()(that implies this

3)(
 iscondition boundary theifBut

).2()(that implies this
2)(

 iscondition boundary theIf

Θ=Θ=⇒=

Θ≠Θ

Θ∈

=

Θ∈

=

n

nn

n

n

nTT

nT
nT

nT
nT

Boundary Conditions
The solutions to the recurrences below have very

different upper bounds:

T(n) =
1 for n = 1
T (n/2)2 otherwise





 

T(n) =
2 for n = 1
T (n/2)2 otherwise





 

T(n) =
3 for n = 1
T (n/2)2 otherwise





 

Iterating the Recurrence
• Called iterative substitution
• Sometimes referred to as plug and chug.
• In iterative substitution we substitute the

original form of the recurrence everywhere T
occurs on the right side of the recurrence
equation.

• Repeat as needed until a pattern appears.
• The math can be messy with this method.
• Sometimes we can use this method to get an

estimate that we can use for the substitution
method.

Iterating the Recurrence
Look at the recurrence relation:

 0 if n = 0
T(n) = 

 T(n - 1) + n if n > 0

Substituting n – 1 for n in the relation above we get:
T(n - 1) = T(n – 2) + (n – 1)

Substitute for n – 1 in the original relation:
T(n) = (T(n – 2) + (n – 1)) + n

We know that
T(n – 2) = T(n – 3) + (n – 2)

So substitute this for T(n – 2) above:
T(n) = (T(n – 3) + (n – 2)) + (n – 1) + n

Iterating the Recurrence
We see the following pattern:

T(n) = T(n - 1) + n
T(n) = (T(n – 2) + (n – 1)) + n
T(n) = (T(n – 3) + (n – 2)) + (n – 1) + n
. . .
T(n) = T(n – (n – 2)) + 2 + 3 + … + (n – 2) + (n – 1) + n
T(n) = T(n – (n – 1)) + 2 + 3 + … + (n – 2) + (n – 1) + n
T(n) = T(n – (n - 0)) + 2 + 3 + … + (n – 2) + (n – 1) + n

We can rewrite (n – (n – 0)) as (n – n) or as (0), thus:
T(n) = T(0) + 1 + 2 + 3 + … + (n – 2) + (n – 1) + n

But we know that T(0) = 0 is the base case, so:
T(n) = 0 + 1 + 2 + 3 + … + (n – 2) + (n – 1) + n

Iterating the Recurrence
The summation of

T(n) = 0 + 1 + 2 + 3 + … + (n – 2) + (n – 1) + n
is

T(n) = (n (n + 1) /2) = ½ n2 + ½ n
which we recognize as O(n2).

Iterating the Recurrence
Let’s look at the recurrence equation for Merge Sort again:

() {=nT c if n = 1
2T(n/2) + cn if n > 1

Let’s substitute 2T(n/2) + cn for T(n/2) in the expression
above:
2T(n/2) + cn = 2(2T((n/2)/2) + c(n/2)) + cn

= 22T(n/22) + 2cn

Let’s substitute 2T(n/2) + cn again:
= 22(2T((n/22)/2 + c ((n/2)/2) + 2cn
= 23T(n/23) + 3cn

What pattern emerges?

Iterating the Recurrence

21T(n/21) + 1cn
22T(n/22) + 2cn
23T(n/23) + 3cn

↓
2iT(n/2i) + icn

Assume that n = 2i (n is an integer power of 2); then
i = log2n.
Substituting log2n for i gives:

2log
2
n  T(n/n) + log2n  c  n

Remember that alog
b

n = nlog
b
a, so we have

nlog
2
2  T(n/n) + log2n  c  n

Iterating the Recurrence
nlog

2
2 is n1 or simply n, so we have:

n  T(n/n) + log2n  c  n
We know that n/n = 1, so we have:

n  T(1) + log2n  c  n
We know that T(1) is the base case for this recurrence, and
T(n) = c if n = 1, so we have:

n  c + log2n  c  n
Rearranging the right and left sides of the summation
gives:

c  n  log2n + c  n

Which is O(n log2n)

Example 4

12/
reach when webe it will condition,boundary theas 1 use weIf

 condition?boundary areach webefore iterate wedofar How
2 is series in the term that theobserve We

)8/(6442
))8/(44/(162)(

again recurrence theIterate
)4/(162

))4/(42/(4)(
recurrence theiteratingStart
)2/(4)(

=

+++=
+++=

++=
++=

+=

i

i

n

nith
nTnnn

nTnnnnT

nTnn
nTnnnT

nTnnT

Example 4, continued

21lg

2

2lg

loglog

lg

i

2...42
...42
...42)(

hat Remember t
)1(2...42)(

as series therewritecan we
2 is term that theknow wesince Now,

lg then 12/
When

nnnnn
nnnn

nnnnnnT
na

nTnnnnT

nith
nin

n

an

n

i

bb

+++++=

++++=

++++=

=

++++=

==

−

)(
)(+)(=

)()1(

)(+
12
12=

)1()2+...2+2+2()(

1for x
1

1x

nprogressio geometric aout Factor
)1(2...42)(

2

22

2

2
lg

21-lg210

n

0=i

1
k

21lg

n
nn
nnn

nn

TnnnT
x

x

TnnnnnnT

n

n

n

n

Θ=

ΘΘ

Θ+−=

Θ







−
−

+=

≠
−

−
=

+++++==

∑
+

−

Recurrence Trees
• Allow you to visualize the process of

iterating the recurrence
• Allows you make a good guess for the

substitution method
• Or to organize the bookkeeping for iterating

the recurrence
• Example

 T(n) = T (n / 4) + T (n / 2) + n2

n2

T(n/4) T(n/2)

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

n2

5/16 n2

25/256 n2=(5/16)2n2

Since the values decrease geometrically, the total
is at most a constant factor more than the largest
term and hence the solution is Θ(n2)

The master method

Provides a cookbook method for solving
recurrences of the form

where a ≥ 1 and b > 1 and f(n) is an
asymptotically positive function.

)()/()(nfbnaTnT +=

Divide and Conquer Algorithms

• The form of the master theorem is very
convenient because divide and conquer
algorithms have recurrences of the form

T(n) = aT(n/ b) + D(n) + C(n)
where
 a is the number of subproblems at each step
 1/ b is the size of each subproblem
 D(n) is the cost of dividing into subproblems
 C(n) is the cost of combining the solutions to
 subproblems

Form of the Master Theorem
• Combines D(n) and C(n) into f(n)
• For example, in Merge-Sort

 Θ (1) if n = 1
T(n) = 

 2T(n/2) + Θ (n) if n > 1a = 2

a = 2, b = 2
f(n) = Θ(n)

• We will ignore floors and ceilings. The proof
of the Master Theorem includes a proof that
this is ok.

Form of the Master Theorem
• Combines D(n) and C(n) into f(n)
• For example, in Merge-Sort

()
()




>Θ
=Θ

=
1 n for n + 2T(n/2)
1 n for 1

)(nT

a = 2, b = 2
f(n) = Θ(n)

We will ignore floors and ceilings. The proof of the
Master Theorem includes a proof that this is ok.

Form of the Master Theorem

• The Master Method is used for recurrence equations
of the form:

()



≥
<

=
1 n for n + aT(n/b)
d n for

)(
f

c
nT

Master theorem
Let a ≥ 1 and b > 1 be constants, let f(n) be a
function, and let T(n) be defined on the non-
negative integers by the recurrence

T(n) = aT(n/b) + f(n)
where we interpret n/b to mean either the floor or
ceiling of n/b. Then T(n) can be bounded
asymptotically as follows:

Master theorem
()

()
()

()
()

()()nfnT

ncfbnaf
nnf
nnnT
nnf

nnT
nOnf

a

a

a

a

a

b

b

b

b

b

Θ=

<≤
>Ω=

Θ=

Θ=

Θ=

>=

+

−

)(
 thenn, largely sufficient

 all and 1 cconstant somefor)()/(if
 and 0, constant somefor)(if:3 Case

lg)(
 then,)(if :2 Case

)(
 then0, constant somefor)(if:1 Case

log

log

log

log

log

ε

ε

ε

ε

3 cases
1. If there is a small constant ε > 0, such that

then T(n) is

() ()ε−= abnOnf log

()abnlogΘ

Here f(n) is polynomially smaller than the
special function abnlog

3 cases
2. If

then T(n) is

() ()abnnf logΘ=

()nn ab lglogΘ

Here f(n) is asymptotically equal to the special
function abnlog

3 cases
3. If there are small constants ε > 0 and c < 1,
such that af(n/b) ≤ cf(n)

for all sufficiently large n, then T(n) is

() ()ε+Ω= abnnf log

()()nfΘ

Here f(n) is polynomially larger than the special
function abnlog

What does the master theorem say?

))(()(
3) (Casefaster ally asymptotic grows)(When

)lg()lg)(()(
2) (Case same theare ratesgrowth When the

)()(
1) (Caseslower ally asymptotic grows)(When

 and)(
:functions twoCompare

log

log

log

nfnT
nf

nnnnfnT

nnT
nf

nnf

a

a

a

b

b

b

Θ=

Θ=Θ=

Θ=

Using the Master Method
Using the master method, solve the recurrence

T(n) = 4T(n/2) + n
Remember the form the recurrence must have:

T(n) = aT(n/b) + f(n)
Here a = 4 , b = 2 , and f(n) = n
Plug these values into our special function
and we get or = n2. Does f(n) = O(n2-ε)?
Yes, if ε = 1. So this is Case 1, and

abnlog

4log2n

() () ()24log2 nnnT Θ=Θ=

Using the Master Method
How do we know that this is Case 1, and not Case
2 or Case 3? Look at f(n). Does:

yes

no

no

() ()ε−= abnOnf log

() ()abnnf logΘ=

() ()ε+Ω= abnnf log

Using the Master Method

)(n=T(n)
and applies 1 case

 2,= where)()(Since

)(
=)(4 64

)4/(64)(

3

3

3364loglog 4

Θ

=

Θ===

==
+=

εnOnf

nnnn
nnfba

nnTnT

ab

Using the Master Method
Using the master method, solve the recurrence

T(n) = T(2n/3) + 1
Remember the form the recurrence must have:

T(n) = aT(n/b) + f(n)
Here a = 1 , b = 3/2 , and f(n) = 1
Plug these values into our special function
and we get or = n0 = 1. Does f(n) = Θ(1)?
Yes. So this is Case 2, and

T(n) = Θ(1• lg n) = Θ(lg n)

1log 2/3n

)lg(=)(
and applies 2 Case

1
1=)(3/4 1

1)4/3()(

01loglog 3/4

nnT

nnn
nfba

nTnT

ab

Θ

===

==
+=

Using the Master Method

Using the Master Method
Using the master method, solve the recurrence

T(n) = T(n/3) + n
Remember the form the recurrence must have:

T(n) = aT(n/b) + f(n)
Here a = 1 , b = 3 , and f(n) = n
Plug these values into our special function
and we get or = n0 = 1. Does f(n) = Ω(n0+ε)?
Yes; ε = 1, and af(n/b) = n/3 = (1/3)f(n), giving c =
1/3. So this is Case 3, and

T(n) = Θ(f(n)) = Θ(n)

1log3n

)lg(n=)(
and applies 3 case

),()(Since

)(
lg=)(4 3

lg)4/(3)(

3log

793.03loglog

4

4

nnT

nnf

nOnn
nnnfba

nnnTnT

ab

Θ

Ω=

==

==
+=

+ε

Using the Master Method

Conclusion

• We talked about:
The substitution method (2 types)
The recursion-tree method
The master method

• Be able to solve recurrences using all
three of these methods.

   

 (f(n))=)(then n, largely sufficient
all and 1constant somefor)()/(if

 and 0,>constant somefor)()(If 3.
)lg(=)(then),()(If .2

)(=)(then
0,> constant somefor)()(If1.

:follows asally asymptotic bounded becan T(n)Then
n/bor n/beither becan n/b where

)()/()(recurrence
 by the integers nonegative on the defined be T(n)let and

function, a be)(let constants, be 1 and 1Let

log

loglog

log

log

Θ
<≤

Ω=

ΘΘ=

Θ

=

+=

>≥

−

−

nT
cncfbnaf

nnf
nnnTnnf

nnT
nOnf

nfbnaTnT

nfba

a

aa

a

a

b

bb

b

b

ε

ε

ε

ε

The Master Theorem

	Chapter 4�Divide and Conquer
	Chapter 4 Topics
	Designing Algorithms
	Divide and Conquer
	Merge Sort
	Slide Number 6
	Slide Number 7
	Recurrences
	Recurrence for Divide and Conquer Algorithms
	Analysis of Merge-Sort
	Recurrence for Merge Sort
	Why Recurrences?
	Why solve recurrences?
	Example Recurrences for Algorithms
	Recurrences for Algorithms,�continued
	“Casual” About Some Details
	Merge Sort Assumptions
	Methods for Solving Recurrences
	Constructive Induction
	Constructive induction
	Constructive Induction
	Example 1
	Proof for Example 1
	Proof for Ex. 1, continued
	Proof for Ex. 1, continued
	Proof for Ex. 1, continued
	Proof for Ex. 1 continued
	Proof for Ex. 1 continued
	Example 2 – Establishing an Upper Bound
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Boundary Conditions
	Boundary Conditions, cont.
	Boundary Conditions
	Iterating the Recurrence
	Iterating the Recurrence
	Iterating the Recurrence
	Iterating the Recurrence
	Iterating the Recurrence
	Iterating the Recurrence
	Iterating the Recurrence
	Example 4
	Example 4, continued
	Slide Number 47
	Recurrence Trees
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	The master method
	Divide and Conquer Algorithms
	Form of the Master Theorem
	Form of the Master Theorem
	Form of the Master Theorem
	Master theorem
	Master theorem
	3 cases
	3 cases
	3 cases
	What does the master theorem say?
	Using the Master Method
	Using the Master Method
	Using the Master Method
	Using the Master Method
	Using the Master Method
	Using the Master Method
	Slide Number 71
	Conclusion
	Slide Number 73

