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Lecture 3 Topics
• Asymptotic notation
• Comparison of functions
• Standard notations and common functions



Asymptotic notation

What does asymptotic mean?
Asymptotic describes the behavior of a function in 

the limit - for sufficiently large values of its 
parameter.



Asymptotic notation

The order of growth of the running time of an 
algorithm is defined as the highest-order term 
(usually the leading term) of an expression that 
describes the running time of the algorithm.  We 
ignore the leading term’s constant coefficient, as 
well as all of the lower order terms in the 
expression.

Example: The order of growth of an algorithm 
whose running time is described by the 
expression an2 + bn + c is simply n2.



Big O

Let’s say that we have some function that 
represents the sum total of all the running-time 
costs of an algorithm; call it f(n).  

For merge sort, the actual running time is: 
f(n) = cn(log2n) + cn

We want to describe the running time of merge 
sort in terms of another function, g(n), so that 
we can say f(n) = O(g(n)), like this:

cn(log2n) + cn = O(nlog2n)



Big O
Definition:

For a given function g(n), O(g(n)) is the set 
of functions
O(g(n)) = { f(n): there exist positive 

constants c and n0 such that
0  ≤ f(n) ≤ c•g(n) for all n ≥ n0 }

c is the multiplicative constant
n0 is the threshold



n

c•g(n)

f(n)

n0

f(n)  O(g(n))



Big O

• Big O is an upper bound on a function, to
within a constant factor.

• O(g(n)) is a set of functions
• Commonly used notation

f(n) = O(g(n))  
• Correct notation

f(n)  O(g(n))



• Question:
How do you demonstrate that f(n)  O(g(n))?

• Answer:
Show that you can find values for c and n0
such that  0 ≤ f(n) ≤ c g(n)  for all  n  ≥ n0

Big O



Example:  Show that 7n – 2 is O(n).

Find a real constant c > 0 and an integer 
constant n0  1 such that 7n – 2  cn for every 
integer n  n0.
Choose c = 7 and n0 = 1.
It is easy to see that 7n – 2  7n for every 
integer n  1.
 7n – 2 is O(n)

Big O



Example:  Show that 20n3 + 10n log n + 5 is
O(n3).

Find a real constant c > 0 and an integer constant 
n0  1 such that 20n3 + 10n log n + 5  cn3 for 
every integer n  n0.
How do we find c and n0?
Note that 10n3 > 10 n log n, and that 5n3 > 5.
So, 15n3 > 10n log n + 5
And 20n3 + 15n3 > 20n3 + 10n log n + 5
Therefore, 35n3 > 20n3 + 10n log n + 5

Big O



So we choose c = 35 and n0 = 1.
An algorithm that takes 20n3 + 10n log n + 5 
steps to run can’t possibly take any more than 
35n3 steps, for every integer n  1.
Therefore 20n3 + 10n log n + 5 is O(n3).

Big O



Example:  Show that ½ n2 – 3n is O(n2)
Find a real constant c > 0 and an integer 
constant n0  1 such that ½ n2 – 3n  cn2 for 
every integer n  n0.
Choose c = ½  and n0 = 1.
Now ½ n2 – 3n  ½ n2 for every integer n  1.

Big O



Example:  Show that an(log2n) + bn is O(nlog n)

Find a real constant c > 0 and an integer constant 
n0  1 such that 

an(log2n) + bn   cnlog n
for every integer n  n0.
Choose c = a+b  and n0 = 2 (why 2?).
Now an(log2n) + bn   cnlog n for every integer 
n  2.

Big O



• Question:
Is n = O(n2) ?

• Answer:
Yes.  Remember that f(n)  O(g(n)) if there 
exist positive constants c and n0 such that

0  ≤ f(n) ≤ c•g(n) for all n ≥ n0 }
If we set c = 1 and n0 = 1, then it is obvious that 
c•n ≤ n2 for all n ≥ n0.  

Big O



• What does this mean about Big-O?
• When we write f(n) = O(g(n)) we mean that some

constant times g(n) is an asymptotic upper
bound on f(n); we are not claiming that this is a
tight upper bound.

Big O



• Big-O notation describes an upper bound
• Assume we use Big-O notation to bound the 

worst case running time of an algorithm
• Now we have a bound on the running time of 

the algorithm on every input

Big O



• Is it correct to say “the running time of insertion 
sort is O(n2)”?

• Technically, the running time of insertion sort 
depends on the characteristics of its input.  If we 
have n items in our list, but they are already in 
sorted order, then the running time of insertion 
sort on this particular input is O(n).  

Big O



• So what do we mean when we say that the 
running time of insertion sort is O(n2)?

• What we normally mean is: 
the worst case running time of insertion sort is 
O(n2)

• That is, if we say that “the running time of 
insertion sort is O(n2)”, we guarantee that under 
no circumstances will insertion sort perform 
worse than  O(n2).

Big O



Big Omega

Definition:
For a given function g(n),  (g(n)) is the set 

of functions:
(g(n)) = {f(n): there exist positive constants
c and n0 such that 

0  ≤ c g(n) ≤ f(n)
for all n ≥ n0 }



n

c g(n)

f(n)

n0

f(n)  (g(n))



Big Omega

• We know that Big-O notation provides an 
asymptotic upper bound on a function.

• Big-Omega notation provides an asymptotic 
lower bound on a function.

• Basically, if we say that f(n) = (g(n)) then 
we are guaranteeing that, beyond n0, f(n) 
never performs any better than c g(n).



Big Omega

• We usually use Big-Omega when we are 
talking about the best case performance of an 
algorithm.

• For example, the best case running time of 
insertion sort (on an already sorted list) is (n).  

• But this also means that insertion sort never 
performs any better than (n) on any type of 
input.

• So the running time of insertion sort  is (n).



Big Omega

• Could we say that the running time of insertion 
sort  is (n2)?

• No.  We know that if its input is already sorted, 
the curve for merge sort will dip below n2 and 
approach the curve for n.

• Could we say that the worst case running time 
of insertion sort  is (n2)?

• Yes.



Big Omega

• It is interesting to note that, for any two
functions f(n) and g(n), f(n) = Θ(g(n)) if and
only if f(n) = O(g(n)) and f(n) = (g(n)).



Big Theta

• Definition
For a given function g(n), (g(n)) is the set of 

functions:
(g(n)) = {f(n): there exist positive constants 

c1, c2 and n0 such that
0  ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) 

for all n ≥ n0 }



Big Theta

• What does this mean?
• When we use Big-Theta notation, we are saying 

that function f(n) can be “sandwiched” between 
some small constant times g(n) and some larger
constant times g(n).  

• In other words, f(n) is equal to g(n) to within a 
constant factor.
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c1 g(n)
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f(n)  (g(n))
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Big Theta

• If f(n) = Θ(g(n)), we can say that g(n) is an 
asymptotically tight bound for f(n).

• Basically, we are guaranteeing that f(n) never 
performs any better than c1 g(n), but also never 
performs any worse than c2 g(n).  

• We can see this visually by noting that, after n0,  
the curve for f(n) never goes below c1 g(n) and 
never goes above c2 g(n).



Big Theta

• Let’s look at the performance of the merge sort.  
• We said that the performance of merge sort was 

cn(log2n) + cn
• Does this depend upon the characteristics of the 

input for merge sort?  That is, does it make a 
difference if the list is already sorted, or reverse 
sorted, or in random order?

• No.  Unlike insertion sort, merge sort behaves 
exactly the same way for any type of input. 



Big Theta

• The running time of merge sort is: 
cn(log2n) + cn

• So, using asymptotic notation, we can discard 
the “+ cn” part of this equation, giving:

cn(log2n) 
• And we can disregard the constant multiplier, c, 

which gives us the running time of merge sort:
Θ(n(log2n))



Big Theta
• Why would we prefer to express the running time

of merge sort as Θ(n(log2n)) instead of
O(n(log2n))?

• Because Big-Theta is more precise than Big-O.
• If we say that the running time of merge sort is

O(n(log2n)), we are merely making a claim about
merge sort’s asymptotic upper bound, whereas of 
we say that the running time of merge sort is  
Θ(n(log2n)), we are making a claim about merge 
sort’s asymptotic upper and lower bounds.



Big Theta
• Would it be incorrect to say that the running 

time of merge sort is  O(n(log2n))?
• No, not at all.  
• It is just that we are not giving all of the 

information that we have about the running 
time of merge sort.  

• But sometimes all we need to know is the 
worst-case behavior of an algorithm.  If that is 
so, then Big-O notation is fine.



Big Theta

• One final note:  the definition of  Θ(g(n)) 
technically requires that every member f(n) 
Θ(g(n)) be asymptotically nonnegative – that is, 
f(n) must be nonnegative whenever n is 
sufficiently large.

• We assume that every function used within Θ
notation (and the other notations used in your 
textbook’s Chapter 3) is asymptotically 
nonnegative



Little o
Definition:

For a given function g(n), o(g(n)) is the set of 
functions:
o(g(n))= {f(n): for any positive constant c,

there exists a constant n0 such that
0 ≤ f(n) < c g(n) 

for all n ≥ n0 }



Little o
• Note the < instead of ≤ in the definition of Little-o:

0 ≤ f(n) < c g(n) for all n ≥ n0

• Contrast this to the definition used for Big-O:
0  ≤ f(n) ≤ c g(n) for all n ≥ n0

• Little-o notation denotes an upper bound that is 
not asymptotically tight.  We might call this a 
loose upper bound.

• Examples:
2no(n2)    but 2n2 o(n2)



Little o
Given that f(n) = o(g(n)), we know that g grows 

strictly faster than f.   This means that you can 
multiply g by a positive constant c and beyond 
n0 g will always exceed f. 

I couldn’t find a graph to demonstrate little-o, but 
here is an example:

n2 = o(n3) but
n2 ≠ o(n2).   

Why?  Because if c = 1, then f(n) = c g(n), and 
the definition insists that f(n) be less than c g(n).



Little-omega
• Definition:

For a given function g(n), (g(n)) is the set of 
functions:
(g(n))= {f(n): for any positive constant c,

there exists a constant n0 such that
0  ≤ c g(n) < f(n) 

for all n ≥ n0 }



Little-omega
• Note the < instead of ≤ in the definition:

0  ≤ c g(n) < f(n) 
• Contrast this to the definition used for Big-:

0  ≤ c g(n) ≤ f(n)
• Little-omega notation denotes a lower bound 

that is not asymptotically tight.  We might call 
this a loose lower bound.

• Examples:
n  n2) n (lg n)



Little-omega
I couldn’t find a graph to demonstrate little-

omega, but here is an example:
n3 is (n2) but
n3 ≠ (n3).   

Why?  Because if c = 1, then f(n) = c g(n), and 
the definition insists that c g(n) be strictly less than
f(n).



Comparison of Notations

f(n) = o(g(n)) ≈ a < b
f(n) = O(g(n)) ≈ a ≤ b
f(n) = Θ(g(n)) ≈ a = b
f(n) = Ω(g(n)) ≈ a ≥ b
f(n) = ω(g(n)) ≈ a > b



Asymptotic notation



Asymptotic Notation in 
Equations and Inequalities

• When asymptotic notation stands alone on right-
hand side of equation, ‘=’ is used to mean ‘ ’.

• In general, we interpret asymptotic notation as 
standing for some anonymous function we do not 
care to name.
Example: 2n2 + 3n + 1 = 2n2 + Θ(n) means that 
2n2 + 3n + 1 = 2n2 + f(n) for some f(n) ∊ Θ(n).
(In this case, f(n) = 3n + 1, which is in Θ(n).)



Asymptotic Notation in 
Equations and Inequalities

• This use of asymptotic notation eliminates 
inessential detail in an equation (e.g., we don’t have 
to specify lower-order terms; they are understood to 
be included in anonymous function).

• The number of anonymous functions in an 
expression is the number of times asymptotic 
notation appears.
E.g., ΣO(i) is not the same as O(1)+(2)+…+O(n).



Asymptotic Notation in 
Equations and Inequalities

• Appearance of asymptotic notation on left-hand side of 
equation means, no matter how the anonymous functions 
are chosen on the left-hand side, there is a way to choose 
the anonymous functions on the right-hand side to make 
the equation valid.

Example: 2n2 + Θ(n) = Θ(n2) means that for any function 
f(n) Θ(n) 

there is some function 
g(n)  Θ(n2) 

such that 2n2 + f(n) = g(n) for all n.



Comparison of Functions

• Transitivity:
f(n) = Θ(g(n)) and g(n) = Θ(h(n)) imply f(n) = Θ(h(n))
f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n))
f(n) = Ω(g(n)) and g(n) = Ω(h(n)) imply f(n) = Ω(h(n))
f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n))
f(n) = ω(g(n)) and g(n) = ω(h(n)) imply f(n) = ω(h(n))



Comparison of Functions

• Reflexivity:
f(n) = Θ(f(n)) 
f(n) = O(f(n)) 
f(n) = Ω(f(n)) 



Comparison of Functions

• Symmetry:
f(n) = Θ(g(n)) iff g(n) = Θ(f(n))



Comparison of Functions

• Transpose symmetry:
f(n) = O(g(n)) iff g(n) = Ω(f(n))
f(n) = o(g(n)) iff g(n) = ω(f(n))



Comparison of Functions

• Analogies:
f(n) = o(g(n))  ≈  a < b
f(n) = O(g(n))  ≈  a ≤ b
f(n) = Θ(g(n))  ≈  a = b
f(n) = Ω(g(n))  ≈  a ≥ b
f(n) = ω(g(n))  ≈  a > b



Comparison of Functions

• Asymptotic relationships:

f(n) is asymptotically smaller than g(n) if 
f(n) = o(g(n))

f(n) is asymptotically larger than g(n) if 
f(n) = ω(g(n))



Comparison of Functions

• Asymptotic relationships:

Not all functions are asymptotically comparable.  
That is, it may be the case that neither f(n) = 
o(g(n)) nor f(n) = ω(g(n)) is true.



Standard Notation

• Pages 51 – 56 contain review material from your 
previous math courses.  Please read this section 
of your textbook and refresh your memory of 
these mathematical concepts.  

• The remaining slides in this section are for your 
aid in reviewing the material; we will not go over 
them in class.



Monotonicity

• A function f(n) is monotonically increasing if 
m ≤ n implies f(m) ≤ f(n).  

• A function f(n) is monotonically decreasing if 
m ≤ n implies f(m) ≥ f(n).  

• A function f(n) is strictly increasing if m < n 
implies f(m) < f(n).  

• A function f(n) is strictly decreasing if m < n 
implies f(m) > f(n). 



Floor and ceiling

• For any real number x, the floor of x is the
greatest integer less than or equal to x.

The floor function f(x) = x is monotonically 
increasing.

• For any real number x, the ceiling of x is the
least integer greater than or equal to x.

The ceiling function f(x) = x is monotonically 
increasing.



Modulo arithmetic

• For any integer a and any positive integer n, 
the value of a modulo n ( or a mod n) is the 
remainder we have after dividing a by n.

• a mod n = a - a/n n
• if (a mod n ) = (b mod n), then a ≡ b mod n 

(read as “a is equivalent to b mod n”)



Polynomials

• Given a nonnegative integer d, a polynomial in 
n of degree d is a function p(n) of the form

where the constants a0, a1, ..., ad are the 
coefficients of the polynomial and ad ≠ 0.


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Polynomials
• A polynomial is asymptotically positive if and 

only if ad > 0.
• If a polynomial p(n) of degree d is 

asymptotically positive, then p(n) = Θ(nd).
• For any real constant a ≥ 0, na is monotonically 

increasing.
• For any real constant a ≤ 0, na is monotonically 

decreasing.
• A function is polynomially bounded if              

f(n) = O(nk) for some constant k.



Exponentials
• For all n and a ≥ 1, the function an is 

monotonically increasing in n.  
• For all real constants a and b such that a > 1,

This means that nb = o(an), which means that 
any exponential function with a base strictly 
greater than 1 grows faster than any polynomial
function.

0lim 
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Logarithms
• lg n = log2 n (binary logarithm)
• ln n = loge n (natural logarithm)
• lgk n = (lg n)k (exponentiation)
• lg lg n = lg (lg n) (composition)
• lg n + k means (lg n) + k, not log (n + k)
• If b > 1 and we hold b constant, then, for n > 0, 

the function logbn is strictly increasing.
• Changing the base of a logarithm from one 

constant to another only changes the value of the 
logarithm by a constant factor.



Logarithms
• A function is polyalgorithmically bounded if 

f(n) = O(lgk n) for some constant k.
• lgb n = o(na) for any constant a > 0
• This means that any positive polynomial 

function grows faster than any 
polyalgorithmic function.



Factorials
• N factorial is defined for integers ≥ 0 as:

A weak upper bound on n! is n! ≤ nn

n! = o(nn)
n! = ω(2n)
lg(n!) = Θ(n lg n)

n! = { 1 if n = 0
n • (n – 1)! if n > 0



Fibonacci numbers
• The Fibonacci numbers are defined by the 

recurrence:
F0 = 0
F1 = 1
Fi = Fi-1 + Fi-2 ≥ 2

• Fibonacci numbers grow exponentially



Conclusion

• Asymptotic notation
• Comparison of functions
• Standard notations and common functions


