
Lecture 3
Growth of Functions

Sultan ALPAR
associate professor, IITU

s.alpar@iitu.edu.kz

Lecture 3 Topics
• Asymptotic notation
• Comparison of functions
• Standard notations and common functions

Asymptotic notation

What does asymptotic mean?
Asymptotic describes the behavior of a function in

the limit - for sufficiently large values of its
parameter.

Asymptotic notation

The order of growth of the running time of an
algorithm is defined as the highest-order term
(usually the leading term) of an expression that
describes the running time of the algorithm. We
ignore the leading term’s constant coefficient, as
well as all of the lower order terms in the
expression.

Example: The order of growth of an algorithm
whose running time is described by the
expression an2 + bn + c is simply n2.

Big O

Let’s say that we have some function that
represents the sum total of all the running-time
costs of an algorithm; call it f(n).

For merge sort, the actual running time is:
f(n) = cn(log2n) + cn

We want to describe the running time of merge
sort in terms of another function, g(n), so that
we can say f(n) = O(g(n)), like this:

cn(log2n) + cn = O(nlog2n)

Big O
Definition:

For a given function g(n), O(g(n)) is the set
of functions
O(g(n)) = { f(n): there exist positive

constants c and n0 such that
0 ≤ f(n) ≤ c•g(n) for all n ≥ n0 }

c is the multiplicative constant
n0 is the threshold

n

c•g(n)

f(n)

n0

f(n)  O(g(n))

Big O

• Big O is an upper bound on a function, to
within a constant factor.

• O(g(n)) is a set of functions
• Commonly used notation

f(n) = O(g(n))
• Correct notation

f(n)  O(g(n))

• Question:
How do you demonstrate that f(n)  O(g(n))?

• Answer:
Show that you can find values for c and n0
such that 0 ≤ f(n) ≤ c g(n) for all n ≥ n0

Big O

Example: Show that 7n – 2 is O(n).

Find a real constant c > 0 and an integer
constant n0  1 such that 7n – 2  cn for every
integer n  n0.
Choose c = 7 and n0 = 1.
It is easy to see that 7n – 2  7n for every
integer n  1.
 7n – 2 is O(n)

Big O

Example: Show that 20n3 + 10n log n + 5 is
O(n3).

Find a real constant c > 0 and an integer constant
n0  1 such that 20n3 + 10n log n + 5  cn3 for
every integer n  n0.
How do we find c and n0?
Note that 10n3 > 10 n log n, and that 5n3 > 5.
So, 15n3 > 10n log n + 5
And 20n3 + 15n3 > 20n3 + 10n log n + 5
Therefore, 35n3 > 20n3 + 10n log n + 5

Big O

So we choose c = 35 and n0 = 1.
An algorithm that takes 20n3 + 10n log n + 5
steps to run can’t possibly take any more than
35n3 steps, for every integer n  1.
Therefore 20n3 + 10n log n + 5 is O(n3).

Big O

Example: Show that ½ n2 – 3n is O(n2)
Find a real constant c > 0 and an integer
constant n0  1 such that ½ n2 – 3n  cn2 for
every integer n  n0.
Choose c = ½ and n0 = 1.
Now ½ n2 – 3n  ½ n2 for every integer n  1.

Big O

Example: Show that an(log2n) + bn is O(nlog n)

Find a real constant c > 0 and an integer constant
n0  1 such that

an(log2n) + bn  cnlog n
for every integer n  n0.
Choose c = a+b and n0 = 2 (why 2?).
Now an(log2n) + bn  cnlog n for every integer
n  2.

Big O

• Question:
Is n = O(n2) ?

• Answer:
Yes. Remember that f(n)  O(g(n)) if there
exist positive constants c and n0 such that

0 ≤ f(n) ≤ c•g(n) for all n ≥ n0 }
If we set c = 1 and n0 = 1, then it is obvious that
c•n ≤ n2 for all n ≥ n0.

Big O

• What does this mean about Big-O?
• When we write f(n) = O(g(n)) we mean that some

constant times g(n) is an asymptotic upper
bound on f(n); we are not claiming that this is a
tight upper bound.

Big O

• Big-O notation describes an upper bound
• Assume we use Big-O notation to bound the

worst case running time of an algorithm
• Now we have a bound on the running time of

the algorithm on every input

Big O

• Is it correct to say “the running time of insertion
sort is O(n2)”?

• Technically, the running time of insertion sort
depends on the characteristics of its input. If we
have n items in our list, but they are already in
sorted order, then the running time of insertion
sort on this particular input is O(n).

Big O

• So what do we mean when we say that the
running time of insertion sort is O(n2)?

• What we normally mean is:
the worst case running time of insertion sort is
O(n2)

• That is, if we say that “the running time of
insertion sort is O(n2)”, we guarantee that under
no circumstances will insertion sort perform
worse than O(n2).

Big O

Big Omega

Definition:
For a given function g(n), (g(n)) is the set

of functions:
(g(n)) = {f(n): there exist positive constants
c and n0 such that

0 ≤ c g(n) ≤ f(n)
for all n ≥ n0 }

n

c g(n)

f(n)

n0

f(n)  (g(n))

Big Omega

• We know that Big-O notation provides an
asymptotic upper bound on a function.

• Big-Omega notation provides an asymptotic
lower bound on a function.

• Basically, if we say that f(n) = (g(n)) then
we are guaranteeing that, beyond n0, f(n)
never performs any better than c g(n).

Big Omega

• We usually use Big-Omega when we are
talking about the best case performance of an
algorithm.

• For example, the best case running time of
insertion sort (on an already sorted list) is (n).

• But this also means that insertion sort never
performs any better than (n) on any type of
input.

• So the running time of insertion sort is (n).

Big Omega

• Could we say that the running time of insertion
sort is (n2)?

• No. We know that if its input is already sorted,
the curve for merge sort will dip below n2 and
approach the curve for n.

• Could we say that the worst case running time
of insertion sort is (n2)?

• Yes.

Big Omega

• It is interesting to note that, for any two
functions f(n) and g(n), f(n) = Θ(g(n)) if and
only if f(n) = O(g(n)) and f(n) = (g(n)).

Big Theta

• Definition
For a given function g(n), (g(n)) is the set of

functions:
(g(n)) = {f(n): there exist positive constants

c1, c2 and n0 such that
0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n)

for all n ≥ n0 }

Big Theta

• What does this mean?
• When we use Big-Theta notation, we are saying

that function f(n) can be “sandwiched” between
some small constant times g(n) and some larger
constant times g(n).

• In other words, f(n) is equal to g(n) to within a
constant factor.

n

c1 g(n)

f(n)

n0

f(n)  (g(n))

c2 g(n)

Big Theta

• If f(n) = Θ(g(n)), we can say that g(n) is an
asymptotically tight bound for f(n).

• Basically, we are guaranteeing that f(n) never
performs any better than c1 g(n), but also never
performs any worse than c2 g(n).

• We can see this visually by noting that, after n0,
the curve for f(n) never goes below c1 g(n) and
never goes above c2 g(n).

Big Theta

• Let’s look at the performance of the merge sort.
• We said that the performance of merge sort was

cn(log2n) + cn
• Does this depend upon the characteristics of the

input for merge sort? That is, does it make a
difference if the list is already sorted, or reverse
sorted, or in random order?

• No. Unlike insertion sort, merge sort behaves
exactly the same way for any type of input.

Big Theta

• The running time of merge sort is:
cn(log2n) + cn

• So, using asymptotic notation, we can discard
the “+ cn” part of this equation, giving:

cn(log2n)
• And we can disregard the constant multiplier, c,

which gives us the running time of merge sort:
Θ(n(log2n))

Big Theta
• Why would we prefer to express the running time

of merge sort as Θ(n(log2n)) instead of
O(n(log2n))?

• Because Big-Theta is more precise than Big-O.
• If we say that the running time of merge sort is

O(n(log2n)), we are merely making a claim about
merge sort’s asymptotic upper bound, whereas of
we say that the running time of merge sort is
Θ(n(log2n)), we are making a claim about merge
sort’s asymptotic upper and lower bounds.

Big Theta
• Would it be incorrect to say that the running

time of merge sort is O(n(log2n))?
• No, not at all.
• It is just that we are not giving all of the

information that we have about the running
time of merge sort.

• But sometimes all we need to know is the
worst-case behavior of an algorithm. If that is
so, then Big-O notation is fine.

Big Theta

• One final note: the definition of Θ(g(n))
technically requires that every member f(n) 
Θ(g(n)) be asymptotically nonnegative – that is,
f(n) must be nonnegative whenever n is
sufficiently large.

• We assume that every function used within Θ
notation (and the other notations used in your
textbook’s Chapter 3) is asymptotically
nonnegative

Little o
Definition:

For a given function g(n), o(g(n)) is the set of
functions:
o(g(n))= {f(n): for any positive constant c,

there exists a constant n0 such that
0 ≤ f(n) < c g(n)

for all n ≥ n0 }

Little o
• Note the < instead of ≤ in the definition of Little-o:

0 ≤ f(n) < c g(n) for all n ≥ n0

• Contrast this to the definition used for Big-O:
0 ≤ f(n) ≤ c g(n) for all n ≥ n0

• Little-o notation denotes an upper bound that is
not asymptotically tight. We might call this a
loose upper bound.

• Examples:
2no(n2) but 2n2 o(n2)

Little o
Given that f(n) = o(g(n)), we know that g grows

strictly faster than f. This means that you can
multiply g by a positive constant c and beyond
n0 g will always exceed f.

I couldn’t find a graph to demonstrate little-o, but
here is an example:

n2 = o(n3) but
n2 ≠ o(n2).

Why? Because if c = 1, then f(n) = c g(n), and
the definition insists that f(n) be less than c g(n).

Little-omega
• Definition:

For a given function g(n), (g(n)) is the set of
functions:
(g(n))= {f(n): for any positive constant c,

there exists a constant n0 such that
0 ≤ c g(n) < f(n)

for all n ≥ n0 }

Little-omega
• Note the < instead of ≤ in the definition:

0 ≤ c g(n) < f(n)
• Contrast this to the definition used for Big-:

0 ≤ c g(n) ≤ f(n)
• Little-omega notation denotes a lower bound

that is not asymptotically tight. We might call
this a loose lower bound.

• Examples:
n  n2) n (lg n)

Little-omega
I couldn’t find a graph to demonstrate little-

omega, but here is an example:
n3 is (n2) but
n3 ≠ (n3).

Why? Because if c = 1, then f(n) = c g(n), and
the definition insists that c g(n) be strictly less than
f(n).

Comparison of Notations

f(n) = o(g(n)) ≈ a < b
f(n) = O(g(n)) ≈ a ≤ b
f(n) = Θ(g(n)) ≈ a = b
f(n) = Ω(g(n)) ≈ a ≥ b
f(n) = ω(g(n)) ≈ a > b

Asymptotic notation

Asymptotic Notation in
Equations and Inequalities

• When asymptotic notation stands alone on right-
hand side of equation, ‘=’ is used to mean ‘ ’.

• In general, we interpret asymptotic notation as
standing for some anonymous function we do not
care to name.
Example: 2n2 + 3n + 1 = 2n2 + Θ(n) means that
2n2 + 3n + 1 = 2n2 + f(n) for some f(n) ∊ Θ(n).
(In this case, f(n) = 3n + 1, which is in Θ(n).)

Asymptotic Notation in
Equations and Inequalities

• This use of asymptotic notation eliminates
inessential detail in an equation (e.g., we don’t have
to specify lower-order terms; they are understood to
be included in anonymous function).

• The number of anonymous functions in an
expression is the number of times asymptotic
notation appears.
E.g., ΣO(i) is not the same as O(1)+(2)+…+O(n).

Asymptotic Notation in
Equations and Inequalities

• Appearance of asymptotic notation on left-hand side of
equation means, no matter how the anonymous functions
are chosen on the left-hand side, there is a way to choose
the anonymous functions on the right-hand side to make
the equation valid.

Example: 2n2 + Θ(n) = Θ(n2) means that for any function
f(n) Θ(n)

there is some function
g(n)  Θ(n2)

such that 2n2 + f(n) = g(n) for all n.

Comparison of Functions

• Transitivity:
f(n) = Θ(g(n)) and g(n) = Θ(h(n)) imply f(n) = Θ(h(n))
f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n))
f(n) = Ω(g(n)) and g(n) = Ω(h(n)) imply f(n) = Ω(h(n))
f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n))
f(n) = ω(g(n)) and g(n) = ω(h(n)) imply f(n) = ω(h(n))

Comparison of Functions

• Reflexivity:
f(n) = Θ(f(n))
f(n) = O(f(n))
f(n) = Ω(f(n))

Comparison of Functions

• Symmetry:
f(n) = Θ(g(n)) iff g(n) = Θ(f(n))

Comparison of Functions

• Transpose symmetry:
f(n) = O(g(n)) iff g(n) = Ω(f(n))
f(n) = o(g(n)) iff g(n) = ω(f(n))

Comparison of Functions

• Analogies:
f(n) = o(g(n)) ≈ a < b
f(n) = O(g(n)) ≈ a ≤ b
f(n) = Θ(g(n)) ≈ a = b
f(n) = Ω(g(n)) ≈ a ≥ b
f(n) = ω(g(n)) ≈ a > b

Comparison of Functions

• Asymptotic relationships:

f(n) is asymptotically smaller than g(n) if
f(n) = o(g(n))

f(n) is asymptotically larger than g(n) if
f(n) = ω(g(n))

Comparison of Functions

• Asymptotic relationships:

Not all functions are asymptotically comparable.
That is, it may be the case that neither f(n) =
o(g(n)) nor f(n) = ω(g(n)) is true.

Standard Notation

• Pages 51 – 56 contain review material from your
previous math courses. Please read this section
of your textbook and refresh your memory of
these mathematical concepts.

• The remaining slides in this section are for your
aid in reviewing the material; we will not go over
them in class.

Monotonicity

• A function f(n) is monotonically increasing if
m ≤ n implies f(m) ≤ f(n).

• A function f(n) is monotonically decreasing if
m ≤ n implies f(m) ≥ f(n).

• A function f(n) is strictly increasing if m < n
implies f(m) < f(n).

• A function f(n) is strictly decreasing if m < n
implies f(m) > f(n).

Floor and ceiling

• For any real number x, the floor of x is the
greatest integer less than or equal to x.

The floor function f(x) = x is monotonically
increasing.

• For any real number x, the ceiling of x is the
least integer greater than or equal to x.

The ceiling function f(x) = x is monotonically
increasing.

Modulo arithmetic

• For any integer a and any positive integer n,
the value of a modulo n (or a mod n) is the
remainder we have after dividing a by n.

• a mod n = a - a/n n
• if (a mod n) = (b mod n), then a ≡ b mod n

(read as “a is equivalent to b mod n”)

Polynomials

• Given a nonnegative integer d, a polynomial in
n of degree d is a function p(n) of the form

where the constants a0, a1, ..., ad are the
coefficients of the polynomial and ad ≠ 0.





d

i

i
inanp

0
)(

Polynomials
• A polynomial is asymptotically positive if and

only if ad > 0.
• If a polynomial p(n) of degree d is

asymptotically positive, then p(n) = Θ(nd).
• For any real constant a ≥ 0, na is monotonically

increasing.
• For any real constant a ≤ 0, na is monotonically

decreasing.
• A function is polynomially bounded if

f(n) = O(nk) for some constant k.

Exponentials
• For all n and a ≥ 1, the function an is

monotonically increasing in n.
• For all real constants a and b such that a > 1,

This means that nb = o(an), which means that
any exponential function with a base strictly
greater than 1 grows faster than any polynomial
function.

0lim 
 n

b

n a
n

Logarithms
• lg n = log2 n (binary logarithm)
• ln n = loge n (natural logarithm)
• lgk n = (lg n)k (exponentiation)
• lg lg n = lg (lg n) (composition)
• lg n + k means (lg n) + k, not log (n + k)
• If b > 1 and we hold b constant, then, for n > 0,

the function logbn is strictly increasing.
• Changing the base of a logarithm from one

constant to another only changes the value of the
logarithm by a constant factor.

Logarithms
• A function is polyalgorithmically bounded if

f(n) = O(lgk n) for some constant k.
• lgb n = o(na) for any constant a > 0
• This means that any positive polynomial

function grows faster than any
polyalgorithmic function.

Factorials
• N factorial is defined for integers ≥ 0 as:

A weak upper bound on n! is n! ≤ nn

n! = o(nn)
n! = ω(2n)
lg(n!) = Θ(n lg n)

n! = { 1 if n = 0
n • (n – 1)! if n > 0

Fibonacci numbers
• The Fibonacci numbers are defined by the

recurrence:
F0 = 0
F1 = 1
Fi = Fi-1 + Fi-2 ≥ 2

• Fibonacci numbers grow exponentially

Conclusion

• Asymptotic notation
• Comparison of functions
• Standard notations and common functions

