
Lecture 2
Getting Started
Sorting problem

Sultan ALPAR associate professor,
IITU

s.alpar@iitu.edu.kz

Formal definition of a problem

Remember that we said that we can formally
define a problem by specifying an input, an
output, and the desired relationship between
the two.

Sorting problem

Insertion sort: method 1

Put all cards on the table; call this the deck.
Let n be the number of cards in the deck.
The hand is empty.
Loop

• Pick the top card from the deck.
• Put it in its correct location in the set of
cards in the hand.

until deck is empty.

Insertion sort
Input: Deck
Output: Hand
Entry conditions:

Deck must contain one or more cards.
Hand must be empty.

Exit conditions:
Deck is empty.
Hand consists of sorted sequence of cards.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Space analysis
What is the space efficiency of this
algorithm?

Input: Deck
Output: Hand

We are moving each card one at a time from
the deck to the hand. We never reuse the
space allocated for the deck for anything.
Since n is the number of cards, we will need
n locations.

Incorrect analysis
What is the run-time efficiency of this
algorithm?
Loop

• Pick the top card from the deck. (1 step)
• Put it in its correct location in the set of cards
in the hand.

until deck is empty.
If n is the number of cards, it looks as if this
sort would take 2 • n steps, right?

Incorrect analysis
NO!
Loop

• Pick the top card from the deck. (1 step)
• Put it in its correct location the set of cards in
the hand. ← LOOK HERE!

until deck is empty.

We need to describe the second step of the
loop in more detail.

More detailed analysis
• Put the card from the Deck in its correct
location the set of cards in the Hand.

This means:
• Look at the value of the DeckCard.
• Search through the deck until you find a
HandCard whose value is less than that of the
DeckCard; insert the DeckCard immediately
before that HandCard. If you run out of cards
in the hand first, insert the DeckCard at the end
of the Hand.

More detailed analysis
So it depends on the # of cards in the Hand.
The worst case is that you might have to
search through:
0 HandCards to insert the first DeckCard
1 HandCard to insert the second DeckCard
2 HandCards to insert the third DeckCard
● ● ●

n -1 HandCards to insert the nth DeckCard

222
)1(21

0

nnnniTotalSteps
n

i
−=

−
==∑

−

=

More detailed analysis
We will talk about this more later, but you
all remember that we use Big-Oh notation to
represent the run-time efficiency of an
algorithm. In our equation

the n2 term is the dominant term, so we say
that the worst-case performance for our
Insertion Sort algorithm is O(n2)

22

2 nnTotalSteps −=

Insertion sort: method 2

Our first try at doing an insertion sort was
inefficient in its use of space, and our
analysis was clumsy. We can do better.
First, let’s do a sort-in place for our
insertion sort. If we represent our Deck as
an array, all we need is the original array
plus one extra memory location, instead of
two full-sized arrays.

Insertion sort: method 2

5 31642

Here is our original Deck. It is represented by an
array of length n, where here n = 6.

Let’s sort this deck. We may have to handle all 6
cards, so we set up a loop iterated as j goes from
1 to n. Inside this loop, we have another loop to
put the card in the right place by moving other
cards.

Insertion sort: method 2

5 31642

Set j to 0.
A list of length 0 is always sorted.

Insertion sort: method 2

5 31642

Add 1 to j. j is now 1.
A list of length 1 is always sorted.

5 31642

Insertion sort: method 2

5 31642

Add 1 to j. j is now 2.
Pretend that the array is of length j.
Take the jth element out of the array and
hold it in our temporary storage location.

5 3164 2

Insertion sort: method 2

5 3164

Insert the temporary element into the list in
its correct place.
How do we do this?
We compare the temporary element with
each element of the sorted subarray.

5 3164 2

2

Insertion sort: method 2

5 3164

Let’s compare from the right (larger) side of the
sorted subarray to the left (smaller) side. The jth

position in the sorted subarray is where the 2
was, so let’s set i to j-1 and compare the
temporary element with the ith element.

5 3164 2

2

Insertion sort: method 2

5 3164

The ith element is the 1st element (2 - 1 = 1), so
we compare the temporary element with 5.
2 is less than 5, so the 5’s correct position in the
sorted subarray is to the right of the 2.

5 3164 2

2

Insertion sort: method 2

5 3164

Move the first element into the second
element of the array (the jth element).

31645 2

2

Insertion sort: method 2

31645

Now decrement i. This makes i = 0, so
stop moving items.
Now insert the 2 in its correct (i + 1) place.
We are guaranteed that the array (so far) is
sorted.

2 31645

2

Insertion sort: method 2

2 31645

Add 1 to j. j is now 3.
Pretend that the array is of length j.
Take the jth element out of the array and
hold it in our temporary storage location.

2 3165 4

Insertion sort: method 2

2 3165

Set i to j – 1.
Compare the 4 with the ith (second) element in
our sorted sublist. 5 is greater than 4, so 4 must
come before 5. Move the 5 to the right.
Decrement i. Now i = 1.

2 3165 4

4

Insertion sort: method 2

2 3165

Compare the 4 with the ith (first) element in our
sorted sublist. 2 is less than 4, so 4 must come
after the 2. Stop moving items

2 3165 4

4

Insertion sort: method 2

2 3165

Insert the temporary element into the list in its
correct (i + 1) place.
We are guaranteed that the array (so far) is
sorted.

2 31654

4

Insertion sort: method 2

2 31654

Add 1 to j. j is now 4.
Pretend that the array is of length j.
Take the jth element out of the array and
hold it in our temporary storage location.

2 3154 6

Insertion sort: method 2

2 3154

Set i to j – 1 (which is 3).
Compare the 6 with the ith (third) element in
our sorted sublist. 5 is less than 6, so 6 must
come after 5. Don’t move anything.

2 3154 6

6

Insertion sort: method 2

2 3154

We didn’t have to move anything.
So insert the 6 in its correct (i + 1) place.
We are guaranteed that the array (so far) is
sorted.

2 31654

6

Insertion sort: method 2

2 31654

Add 1 to j. j is now 5.
Pretend that the array is of length j.
Take the jth element out of the array and
hold it in our temporary storage location.

2 3654 1

Insertion sort: method 2

2 3654

Set i to j – 1 (which is 4).
Compare the 1 with the ith (fourth) element in
our sorted sublist. 6 is greater than 1, so 1 must
come before 6. Move the 6 to the right..
Decrement i. Now i = 3.

2 3654 1

1

Insertion sort: method 2

2 3654

Compare the 1 with the ith (third) element in
our sorted sublist. 5 is greater than 1, so 1 must
come before 5. Move the 5 to the right.
Decrement i. Now i = 2.

2 3654 1

1

Insertion sort: method 2

2 3654

Compare the 1 with the ith (second) element in
our sorted sublist. 4 is greater than 1, so 1 must
come before 4. Move the 4 to the right.
Decrement i. Now i = 1.

2 3654 1

1

Insertion sort: method 2

2 3654

Compare the 1 with the ith (first) element in our
sorted sublist. 2 is greater than 1, so 1 must
come before 2. Move the 2 to the right.
Decrement i. Now i = 0.
Since i = 0, stop moving things.

36542 1

1

Insertion sort: method 2

36542

The 2, 4, 5, and 6 have been moved.
Now insert the 1 in its correct (i + 1) place.
We are guaranteed that the array (so far) is
sorted.

1 36542

1

Insertion sort: method 2

1 36542

Add 1 to j. j is now 6.
Pretend that the array is of length j.
Take the jth element out of the array and hold it
in our temporary storage location.

1 6542 3

Insertion sort: method 2

1 6542

Set i to j – 1 (which is 5).
Compare the 3 with the ith (fifth) element in our
sorted sublist. 6 is greater than 3, so 3 must
come before 6. Move the 6 to the right.
Decrement i. Now i = 4.

1 6542 3

3

Insertion sort: method 2

1 6542

Compare the 3 with the ith (fourth) element in
our sorted sublist. 5 is greater than 3, so 3 must
come before 5. Move the 5 to the right.
Decrement i. Now i = 3.

1 6542 3

3

Insertion sort: method 2

1 6542

Compare the 3 with the ith (third) element in
our sorted sublist. 4 is greater than 3, so 3 must
come before 4. Move the 4 to the right.
Decrement i. Now i = 2.

1 6542 3

3

Insertion sort: method 2

1 6542

Compare the 3 with the ith (second) element in
our sorted sublist. 2 is less than 3, so 3 must
come after 2. Stop moving things.

1 6542 3

3

Insertion sort: method 2

1 6542

The 4, 5, and 6 have been moved.
Now insert the 3 in its correct (i + 1) place.
We are guaranteed that the array (so far) is
sorted.

1 65432

3

Insertion sort: method 2

1 65432

Add 1 to j. j is now 7.
Oops! j now exceeds n. Exit from the outer
loop, and return the sorted list.

1 65432

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Insertion-sort(A)

1 for j ← 2 to length(A)
2 do key ← A[j]
3 // Insert A[j] into the sorted

// sequence A[1..j - 1]
4 i ← j – 1
5 while i > 0 and A[i] > key
6 do A[i + 1] ← A[i]
7 i ← i – 1
8 A[i + 1] ← key

Insertion-sort(A)

Note that, as we go through the outer loop (the for
loop), we are guaranteed that the part of the array
from element # 1 up through element j – 1 is is
sorted order.
We can state this as a formal loop invariant:
“At the start of each iteration of the for loop of
lines 1-8, the subarray A[1..j-1] consists of the
elements originally in A[1..j-1] but in sorted order.”

Loop invariants

We must show three things about a loop invariant:
Initialization: It is true prior to the first iteration
of the loop.
Maintenance: If it is true before an iteration of the
loop, it remains true before the next iteration.
Termination: When the loop terminates, the
invariant gives us a useful property that helps show
that the algorithm is correct.

Loop invariants

Initialization: It is true prior to the first iteration
of the loop.

Is the array sorted prior to the first iteration of the
loop?
Yes. The first iteration begins by assuming that a
list of size 1 is already in sorted order, and starts off
by assigning j a value of 2. A list of size 1 is
always in sorted order.

Loop invariants
Maintenance: If it is true before an iteration of the
loop, it remains true before the next iteration.

If the array is sorted prior to an iteration of the
loop, will that iteration preserve its sorted status ?
Yes. Our examination of the behavior of the inner
loop shows that if the jth element of the array is out
of order when entering the inner loop, then it will
be in the correct order when exiting the loop. The
inner loop is basically all that the outer loop does
during one iteration.

Loop invariants
Termination: When the loop terminates, the
invariant gives us a useful property that helps show
that the algorithm is correct.

What happens when the loop terminates? Does
that preserve the sorted order?
The loop terminates when j = n + 1. Just prior to
that point, while j = n, all j (and thus all n) of the
elements of the array are in sorted order. So, yes,
the termination condition of the loop preserves the
sorted order of the array.

Analyzing algorithms

For purposes of analysis, we will assume that all of
our algorithms are running on a RAM computer
(generic random access machine), with no
parallelization, no special instructions, capabilities,
etc.

Analyzing algorithms

Running time: Assume that we write our algorithm
in such a way that it has i lines (or steps), each of
which takes a constant amount of time to execute
on our RAM. So, c1 is the time it takes to execute
line 1, c2 is the time it takes to execute line 2, etc.
Obviously, if there are no loops in our algorithm,
its running time will be c1 + c2 + . . . ci. A constant
plus a constant plus a constant . . . equals a
constant. So the running time of any algorithm
with no loops is a constant.

Analyzing algorithms

What if the algorithm has loops?
If the number of times the algorithm executes the
loop is constant, then the running time of the
algorithm is still a constant.
However, the running time of most algorithms will
depend upon the input.
If the number of times the algorithm executes the
loop is proportional to the input, then the running
time will not be a constant.

Analyzing algorithms

When we talk about the size of the input, we
usually mean the number of items in the input.
However, for some problems the size may best be
described in other terms. For example, to analyze
a low-level algorithm for multiplying two integers,
the size is the number of bits it takes to represent
the input. Another example is an algorithm for
manipulating a graph; graphs have both edges and
vertices, so the size of the input will be two
numbers instead of one.

Insertion-sort(A)

1 for j ← 2 to length(A)
2 do key ← A[j]
3 // Insert A[j] into the sorted

// sequence A[1..j - 1]
4 i ← j – 1
5 while i > 0 and A[i] > key do
6 A[i + 1] ← A[i]
7 i ← i – 1
8 A[i + 1] ← key

∑
=

n

j
jt

2

()∑
=

−
n

j
jt

2
1

()∑
=

−
n

j
jt

2
1

INSERTION-SORT(A) Cost Times

1 for j ← 2 to length(A) do c1 n

2 key ← A[j] c2 n - 1

3 // Insert A[j] into the sorted
sequence A[1..j - 1]

0 n - 1

4 i ← j – 1 c4 n - 1

5 while i > 0 and A[i] > key do c5

6 A[i + 1] ← A[i] c6

7 i ← i – 1 c7

8 A[i + 1] ← key c8 n - 1

Insertion sort
Let’s look at the details of the running time of this
algorithm.

“Cost” is some constant value that indicates the
computation cost (e.g., in terms of CPU cycles,
etc.) of the operation performed in a line of the
algorithm.
“Times” will be the number of times a particular
line of the algorithm will be executed.

Insertion sort
• Line 3 is a comment line, and comments are
considered not to cost anything, since they will not
actually be executed when a program runs.
• Line 1 begins an outer for loop. All of the other
lines are within this loop.
• Lines 2, 4, and 8 are directly under the for loop.
The body of this outer loop will execute n–1 times
(as j goes from 2 to n, where n = length(A)). So
lines 2,4, and 8 will execute n-1 times.
•Line 1 will be checked one extra time for the exit
condition from the loop, so it executes n times.

Insertion sort
• Lines 5, 6 and 7 are within the inner while loop.
The number of times they will be executed (called
t) depends upon the value of j at the time the while
loop is entered. The value of j is determined by the
value of the for loop in line 1.
• So lines 6 and 7 will be executed
times.
• Line 5 will be checked one extra time for the exit
condition from the loop every time it is visited, so
it executes times.

()∑
=

−
n

j
jt

2
1

∑
=

n

j
jt

2

Insertion sort
The total cost of insertion sort is:

The actual cost of insertion sort when used for any
particular instance of the sorting problem depends
upon the characteristics of that specific instance.
For example, the cost of sorting a list with 100
elements will have a greater cost than sorting a list
with only 10 elements.

() () () () ()11111)(8
2

7
2

6
2

5421 −+−+−++−+−+= ∑∑∑
===

nctctctcncncncnT
n

j
j

n

j
j

n

j
j

Insertion sort
Moreover, the order in which the elements of the
array are listed will affect the running time cost of
insertion sort.
For this algorithm the best case occurs when the
array is already sorted.
The worst case occurs when the array is in reverse
order.
The average case occurs – well, most of the time.
These are the three performances of an algorithm
we are normally interested in: best case, average
case, and worst case.

Insertion sort
Best case:

The inner loop of our array starts off:
while i > 0 and A[i] > key

Do we ever have to do the body of this inner loop
more than once, for each item in the array? No,
because A[i] is always < the key, and we will drop
out of the inner loop before doing anything.

1 65432

Insertion sort

So the best case running time for insertion sort is:

This can be expressed as:

which can be reduced to:
an + b

which is a linear function of n. So the best case
performance of insertion sort is linear time.

() () () ()1111)(85421 −+−+−+−+= ncncncncncnT

() () ()854285421 ccccncccccnT +++−++++=

Insertion sort
Worst case:

The inner loop of our array starts off:
while i > 0 and A[i] > key

How many times do we have to do the body of this
inner loop? Ouch! It’s i-1 steps each time through
the loop. So the 6th items requires 5 comparisons
and moves, the 5th requires 4, the 4th requires 3, etc.

6 12345

Insertion sort

So the worst case running time for insertion sort is:

This is equivalent to:

which can be reduced to:
an2 + bn + c

which is a quadratic function of n

() () () () () () ()1
2

1
2

11
2

111 8765421 −+





 −

+





 −

+





 −

+
+−+−+= ncnncnncnncncncncnT

() ()85428
765

421
2765

222222
ccccncccccccncccnT +++−






 +−−++++






 ++=

Algorithm analysis
When we analyze an algorithm, we are often
primarily interested in its worst-case performance.
Why?
• The worst-case is an upper bound on the running
time of an algorithm. We know its performance
can’t be any worse than that.
• For some algorithms, the worse case occurs fairly
often.
• The average case performance is often about as
bad as the worst case.

Algorithm analysis
Average case analysis is especially hard to do:
• What is an “average” input for a problem?
• Can’t just assume that all instances are equally
likely. Many businesses maintain databases in
sorted order. When a new item is added, the
database must be resorted. So, most instances of
sorting occur when the database is already in
nearly-sorted order, with only one item out of
place.
• We sometimes can use a randomized algorithm to
allow a probabilistic analysis.

Merge sort
Insertion sort used an incremental approach to
sorting: sort the smallest subarray (1 item), add
one more item to the subarray, sort it, add one more
item, sort it, etc.

Let’s think about how the merge sort works.
Basically, it uses a divide-and-conquer approach,
based on the concept of recursion.

Merge sort
Divide-and-conquer:
• Divide the problem into several subproblems.
• Conquer the subproblems by solving them
recursively. If the subproblems are small enough,
solve them directly.
• Combine the solutions to the subproblems to get
the solution for the original problem.

Merge sort
Divide-and-conquer:
• Divide the n-element sequence to be sorted into
two subsequences of n/2 each.
• Conquer by sorting the subsequences recursively
by calling merge sort again. If the subsequences
are small enough (of length 1), solve them directly.
(Arrays of length 1 are already sorted.)
• Combine the two sorted subsequences by merging
them to get a sorted sequence.

Merge sort
Note that the merge sort basically consists of
recursive calls to itself. The base case (which stops
the recursion) occurs when a subsequence has a
size of 1.
The combine step is accomplished by a call to an
algorithm called Merge.

Here is what the algorithm for Merge-Sort looks
like:

Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

A is the (sub)array when the procedure is called.
p, q, and r are indices numbering elements of the

array such that p ≤ q ≤ r ; p is the lowest index
and r is the highest index.

Merge
Without going into detail about how Merger-Sort

works yet, let’s take a look at the Merge part.
Merge works by assuming you have two
already-sorted sublists and an empty array:

1 54

2 63

Merge

1 74 2 3∞ 9 ∞

Let’s assume we have a sentinel (infinity, which
is guaranteed to be larger than the last item) at
the end of each sublist which lets us know when
we have hit the end of the sublist.

Merge

1 74 2 3∞ 9 ∞

p q q+1 r

The two sublists are indexed from p to q (for the
first sublist) and from q+1 to r for the second
sublist. There are (r – p) + 1 items in the two
sublists combined, so we will need an output
array of that size.

Merge

1 74 2

1

3∞ 9 ∞

Look at the first item in each subarray. Choose
the smallest item.

Move the chosen item to the output array.

Merge

74 2

1 2

3∞ 9 ∞

Look at the first item in each subarray. Choose
the smallest item.

Move the chosen item to the output array.

Merge

74

1 32

3∞ 9 ∞

Look at the first item in each subarray. Choose
the smallest item.

Move the chosen item to the output array.

Merge

74

1 432

∞ 9 ∞

Look at the first item in each subarray. Choose
the smallest item.

Move the chosen item to the output array.

Merge

7

1 7432

∞ 9 ∞

Look at the first item in each subarray. Choose
the smallest item.

Move the chosen item to the output array.

Merge

1 97432

∞ 9 ∞

Look at the first item in each subarray. Choose
the smallest item.

Move the chosen item to the output array.

Merge

1 97432

∞ ∞

We know that we have only n = (r – p) + 1 items.
So, we will make only (r – p) + 1 moves.
Here r = 1 and p = 6, and (6 – 1) + 1 = 6, so when
we have made our 6th move we’re through.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Merge
Assuming that the two sublists are in sorted order

when they are passed to the Merge routine, is
Merge guaranteed to output a sorted array?

Yes. We can verify that each step of Merge
preserves the sorted order that the two sublists
already have.

Merge(A, p, q, r)
1 n1 ← (q – p) + 1
2 n2 ← (r – q)
3 create arrays L[1..n1+1] and R[1..n2+1]
4 for i ← 1 to n1 do
5 L[i] ← A[(p + i) -1]
6 for j ← 1 to n2 do
7 R[j] ← A[q + j]
8 L[n1 + 1] ← ∞
9 R[n2 + 1] ← ∞
10 i ← 1
11 j ← 1
12 for k ← p to r do
13 if L[I] <= R[j]
14 then A[k] ← L[i]
15 i ←i + 1
16 else A[k] ← R[j]
17 j ← j + 1

Analysis of Merge
The loop in lines 12-17 of Merge is the heart of how

Merge works. They maintain the loop invariant:
• At the start of each iteration of the for loop of

lines 12-17, the subarray A[p..k-1]contains the k
- p smallest elements of L[1..n1+1] and
R[1..n2+1], in sorted order. Moreover, L[i] and
R[j] are the smallest elements of their arrays that
have not been copied back into A.

Analysis of Merge
To prove that Merge is a correct algorithm, we must

show that:
• Initialization: the loop invariant holds prior to

the first iteration of the for loop in lines 12-17
• Maintenance: each iteration of the loop

maintains the invariant
• Termination: the invariant provides a useful

property to show correctness when the loop
terminates

Initialization:

As we enter the for loop, k is set equal to p. This
means that subarray A[p..k-1] is empty. Since
k - p = 0, the subarray is guaranteed to contain
the k - p smallest elements of L and R. By
lines 10 and 11, i = j = 1, so L[i] and R[j] are
the smallest elements of their arrays that have
not been copied into A.

Maintenance:
As we enter the loop, we know that A[p..k-1]

contains the k - p smallest elements of L and R.
Assume L[i] <= R[j]. Then:

L[i] is the smallest element not copied into A.
Line 14 will copy L[i] into A[k].
At this point the subarray A[p..k] will contain the k - p

+ 1 smallest elements.
Incrementing k (in line 12) and i (in line 15)

reestablishes the loop invariant for the next
iteration.

Assume L[i] >= R[j]. Then:
Lines 16-17 maintain the loop invariant.

Termination:
The loop invariant states that subarray

“A[p..k-1]contains the k - p smallest elements
of L[1..n1+1] and R[1..n2+1], in sorted order.”

When we drop out of the loop, k = r + 1.
So r = k – 1, and A[p..k-1] is actually A[p..r], which

is the whole array.
The arrays L and R together contain n1 + n2 + 2

elements. From lines 1 and 2 we know that n1 +
n2 = ((q – p) + 1) + ((r – q) = (r – p) + 1, and
this is the number of all of the elements in the
array. The extra 2 is the two sentinel elements.

Merge sort
Now let’s look at Merge-Sort again:

Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Line 1 is our base case; we drop out of the
recursive sequence of calls when p >= r.

Merge Sort
Given our Merge routine, we can now see how
Merge-Sort works.
• Assume a list of length = 2m:

• Take an unsorted list as input.
• Split it in half. Now you have two sublists.
• Split those in half, and so on, until you have lists

of length 1.
• Merge those into sublists of length 2, then merge

those into sublists of length 4, etc. Keep going
until you have just one list left.

• That list is now sorted.

Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Let’s call Merge-Sort with an array of 4 elements:
Merge-Sort(A, 1, 4), where p = 1 and r = 4.

Line 1: p < r, so do the then part of the if
Line 2: q ← (p+r)/2, which is 2
Line 3: we call Merge-Sort(A, 1, 2)
WAIT HERE (let’s call our place Z) until we return

from this call

Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Calling Merge-Sort(A, 1, 2)
Line 1: p < r, so do the then part of the if
Line 2: q ← (p+r)/2, which is 1
Line 3: we call Merge-Sort(A, 1, 1)
WAIT HERE (let’s call our place Y) until we return

from this call

Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Calling Merge-Sort(A, 1, 1)
Line 1: p = r, so skip the then part of the if
Return from this call to Y

Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

We called Merge-Sort(A, 1, 2)
We have returned from our call in line 3
Line 4: We call Merge-Sort(A, 2, 2)
WAIT HERE (let’s call our place X) until we return

from this call

Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Calling Merge-Sort(A, 2, 2)
Line 1: p = r, so skip the then part of the if
Return from this call to X

Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

We called Merge-Sort(A, 2, 2)
We have returned from our call in line 4
Line 5: We call Merge(A, 1, 2, 2)
What does Merge do?

Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Step 5: Merge(A, 1, 2, 2) :
• creates two temporary arrays of 1 element each
• copies A[1] and A[2] into these 2 arrays
• merges the elements in these two temporary

arrays back into A[1..2] in sorted order
• returns from the call to Z

Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Return from call to Merge-Sort(A, 1, 2) in Line 3.
At this point half of our original array, A[1..2],
is in sorted order.

Next we call Merge-Sort(A, 3, 4). It will put
A[3..4] into sorted order.

Line 5 will merge A[1..2] and A[3..4] into A[1..4]
in sorted order.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Analysis of Divide-and-Conquer algorithms

The Merge-Sort algorithm contains a recursive call
to itself. When an algorithm contains a
recursive call to itself, its running time often can
be described by a recurrence equation, or
recurrence.

The recurrence equation describes the running time
on a problem of size n in terms of the running
time on smaller inputs.

We can use mathematical tools to solve the
recurrence and provide bounds on the
performance of the algorithm.

Analysis of Divide-and-Conquer algorithms

A recurrence of a divide-and-conquer algorithm is
based on its 3 parts: divide, conquer, and
combine.

Let T(n) be the running time on a problem of size n.
If the problem is small enough, say n <= c, we can

solve it in a straightforward manner, which takes
constant time, which we write as Θ(1).

If the problem is bigger, we solve it by dividing the
problem to get a subproblems, each of which is
1/b the size of the original. For Merge-Sort,
both a and b are 2.

Analysis of Divide-and-Conquer algorithms

Assume it takes D(n) time to divide the problem
into subproblems.

Assume it takes C(n) time to combine the solutions
to the subproblem into the solution for the
original problem.

We get the recurrence:

() {=nT Θ(1) if n ≤ c

aT(n/b) + D(n) + C(n) otherwise

Analysis of Merge-Sort
Base case: n = 1. Merge sort on an array of size 1

takes constant time, Θ(1).
Divide: The Divide step of Merge-Sort just

calculates the middle of the subarray. This takes
constant time. So D(n) = Θ(1).

Conquer: We make 2 calls to Merge-Sort. Each
call handles ½ of the subarray that we pass as a
parameter to the call. The total time required is
2T(n/2).

Combine: Running Merge on an n-element
subarray takes Θ(n), so C(n) = Θ(n).

Analysis of Merge-Sort
Here is what we get:

() {=nT Θ(1) if n = 1

2T(n/2) + Θ(1) + Θ(n) if n > 1

By inspection, we can see that we can ignore the
Θ(1) factor, as it is irrelevant compared to Θ(n).
We can rewrite this recurrence as:

() {=nT c if n = 1
2T(n/2) + c(n) if n > 1

Analysis of Merge-Sort

How much time will it take for the Divide step?
Let’s assume that n is some power of 2.
Then for an array of size n, it will take us log2n

steps to recursively subdivide the array into
subarrays of size 1.

Example: 8 = 23

Analysis of Merge-Sort

Example: 8 = 23

Step 0:

Step 1:

Step 2:

Step 3:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Analysis of Merge-Sort
So, it took us log2n steps to divide the array all the

way down into subarrays of size 1.
As a result, we will have log2n + 1 (sub)arrays to

deal with. In our example, where n = 8 and
log2n = 3, we will have to deal with arrays of
size 1, 2, 4, and 8.

Every time we Merge the arrays, it takes us n steps,
since we have to put each array item into its
proper position within each array.

Analysis of Merge-Sort
Consequently, we will have log2n + 1 recursive calls

of the Merge-Sort function, and each time we
call Merge-Sort the Merge function will cost us
n steps, times a constant value.

The total cost, then, can be expressed as:
cn(log2n + 1)

Multiplying this out gives:
cn(log2n) + cn

Ignoring the low-order term and the constant c
gives:
Θ(n•log2n)

Conclusion
• Insertion Sort
• Merge Sort
• Analysis of Algorithms
• Proof of correctness
• Divide-and-conquer algorithms
• Recurrence relations

	Chapter 2�Getting Started
	Formal definition of a problem
	Sorting problem
	Insertion sort: method 1
	Insertion sort
	Slide Number 6
	Space analysis
	Incorrect analysis
	Incorrect analysis
	More detailed analysis
	More detailed analysis
	More detailed analysis
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Insertion sort: method 2
	Slide Number 43
	Insertion-sort(A)
	Insertion-sort(A)
	Loop invariants
	Loop invariants
	Loop invariants
	Loop invariants
	Analyzing algorithms
	Analyzing algorithms
	Analyzing algorithms
	Analyzing algorithms
	Insertion-sort(A)
	Slide Number 55
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Algorithm analysis
	Algorithm analysis
	Merge sort
	Merge sort
	Merge sort
	Merge sort
	Merge sort
	Merge
	Merge
	Merge
	Merge
	Merge
	Merge
	Merge
	Merge
	Merge
	Merge
	Slide Number 82
	Merge
	Merge(A, p, q, r)
	Analysis of Merge
	Analysis of Merge
	Initialization:
	Maintenance:
	Termination:
	Merge sort
	Merge Sort
	Merge sort
	Merge sort
	Merge sort
	Merge sort
	Merge sort
	Merge sort
	Merge sort
	Merge sort
	Slide Number 100
	Analysis of Divide-and-Conquer algorithms
	Analysis of Divide-and-Conquer algorithms
	Analysis of Divide-and-Conquer algorithms
	Analysis of Merge-Sort
	Analysis of Merge-Sort
	Analysis of Merge-Sort
	Analysis of Merge-Sort
	Slide Number 108
	Analysis of Merge-Sort
	Analysis of Merge-Sort
	Conclusion

