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Formal definition of a problem

Remember that we said that we can formally 
define a problem by specifying an input, an 
output, and the desired relationship between 
the two.



Sorting problem



Insertion sort: method 1

Put all cards on the table; call this the deck.  
Let n be the number of cards in the deck.
The hand is empty.
Loop 

• Pick the top card from the deck.
• Put it in its correct location in the set of 
cards in the hand.

until deck is empty.



Insertion sort
Input:  Deck
Output: Hand
Entry conditions: 

Deck must contain one or more cards.
Hand must be empty.

Exit conditions:
Deck is empty.
Hand consists of sorted sequence of cards.
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Space analysis
What is the space efficiency of this 
algorithm?

Input:  Deck
Output: Hand

We are moving each card one at a time from 
the deck to the hand.  We never reuse the 
space allocated for the deck for anything.  
Since n is the number of cards, we will need 
n locations.



Incorrect analysis
What is the run-time efficiency of this 
algorithm?
Loop 

• Pick the top card from the deck.  (1 step)
• Put it in its correct location in the set of cards 
in the hand.  

until deck is empty.
If n is the number of cards, it looks as if this 
sort would take 2 • n steps, right?



Incorrect analysis
NO!
Loop 

• Pick the top card from the deck.  (1 step)
• Put it in its correct location the set of cards in 
the hand.  ← LOOK HERE!

until deck is empty.

We need to describe the second step of the 
loop in more detail.



More detailed analysis
• Put the card from the Deck in its correct 
location the set of cards in the Hand.  

This means:
• Look at the value of the DeckCard.
• Search through the deck until you find a 
HandCard whose value is less than that of the 
DeckCard; insert the DeckCard immediately 
before that HandCard.  If you run out of cards 
in the hand first, insert the DeckCard at the end 
of the Hand.



More detailed analysis
So it depends on the # of cards in the Hand.  
The worst case is that you might have to 
search through:
0 HandCards to insert the first DeckCard
1 HandCard to insert the second DeckCard
2 HandCards to insert the third DeckCard
● ● ●

n -1 HandCards to insert the nth DeckCard
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More detailed analysis
We will talk about this more later, but you 
all remember that we use Big-Oh notation to 
represent the run-time efficiency of an 
algorithm.  In our equation

the n2 term is the dominant term, so we say 
that the worst-case performance for our 
Insertion Sort  algorithm is O(n2)
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Insertion sort: method 2

Our first try at doing an insertion sort was 
inefficient in its use of space, and our 
analysis was clumsy.  We can do better.
First, let’s do a sort-in place for our 
insertion sort.  If we represent our Deck as 
an array, all we need is the original array 
plus one extra memory location, instead of 
two full-sized arrays.



Insertion sort: method 2

5 31642

Here is our original Deck.  It is represented by an 
array of length n, where here n = 6. 

Let’s sort this deck.  We may have to handle all 6 
cards, so we set up a loop iterated as j goes from 
1 to n.  Inside this loop, we have another loop to 
put the card in the right place by moving other 
cards.  



Insertion sort: method 2

5 31642

Set j to 0.  
A list of length 0 is always sorted.



Insertion sort: method 2

5 31642

Add 1 to j.  j is now 1.
A list of length 1 is always sorted.

5 31642



Insertion sort: method 2

5 31642

Add 1 to j.  j is now 2.
Pretend that the array is of length j.
Take the jth element out of the array and 
hold it in our temporary storage location.

5 3164 2



Insertion sort: method 2

5 3164

Insert the temporary element into the list in 
its correct place.
How do we do this?
We compare the temporary element with 
each element of the sorted subarray.

5 3164 2

2



Insertion sort: method 2

5 3164

Let’s compare from the right (larger) side of the 
sorted subarray to the left (smaller) side.  The jth

position in the sorted subarray is where the 2 
was, so let’s set i to j-1 and compare the 
temporary element with the ith element.  

5 3164 2

2



Insertion sort: method 2

5 3164

The ith element is the 1st element (2 - 1 = 1), so 
we compare the temporary element with 5.
2 is less than 5, so the 5’s correct position in the 
sorted subarray is to the right of the 2.

5 3164 2

2



Insertion sort: method 2

5 3164

Move the first element into the second 
element of the array (the jth element).  

31645 2

2



Insertion sort: method 2

31645

Now decrement i.  This makes i = 0, so 
stop moving items.
Now insert the 2 in its correct (i + 1) place.
We are guaranteed that the array (so far) is 
sorted.

2 31645

2



Insertion sort: method 2

2 31645

Add 1 to j.  j is now 3.
Pretend that the array is of length j.
Take the jth element out of the array and 
hold it in our temporary storage location.

2 3165 4



Insertion sort: method 2

2 3165

Set i to j – 1.
Compare the 4 with the ith (second) element in 
our sorted sublist.  5 is greater than 4, so 4 must 
come before 5.  Move the 5 to the right.
Decrement i.  Now i = 1.

2 3165 4

4



Insertion sort: method 2

2 3165

Compare the 4 with the ith (first) element in our 
sorted sublist.  2 is less than 4, so 4 must come 
after the 2.  Stop moving items

2 3165 4

4



Insertion sort: method 2

2 3165

Insert the temporary element into the list in its 
correct (i + 1) place.  
We are guaranteed that the array (so far) is 
sorted.

2 31654

4



Insertion sort: method 2

2 31654

Add 1 to j.  j is now 4.
Pretend that the array is of length j.
Take the jth element out of the array and 
hold it in our temporary storage location.

2 3154 6



Insertion sort: method 2

2 3154

Set i to j – 1 (which is 3).
Compare the 6 with the ith (third) element in 
our sorted sublist.  5 is less than 6, so 6 must 
come after 5.  Don’t move anything.

2 3154 6

6



Insertion sort: method 2

2 3154

We didn’t have to move anything.
So insert the 6 in its correct (i + 1) place.
We are guaranteed that the array (so far) is 
sorted.

2 31654

6



Insertion sort: method 2

2 31654

Add 1 to j.  j is now 5.
Pretend that the array is of length j.
Take the jth element out of the array and 
hold it in our temporary storage location.

2 3654 1



Insertion sort: method 2

2 3654

Set i to j – 1 (which is 4).
Compare the 1 with the ith (fourth) element in 
our sorted sublist.  6 is greater than 1, so 1 must 
come before 6.  Move the 6 to the right..
Decrement i.  Now i = 3.

2 3654 1

1



Insertion sort: method 2

2 3654

Compare the 1 with the ith (third) element in 
our sorted sublist.  5 is greater than 1, so 1 must 
come before 5.  Move the 5 to the right.
Decrement i.  Now i = 2.

2 3654 1

1



Insertion sort: method 2

2 3654

Compare the 1 with the ith (second) element in 
our sorted sublist.  4 is greater than 1, so 1 must 
come before 4.  Move the 4 to the right.
Decrement i.  Now i = 1.

2 3654 1

1



Insertion sort: method 2

2 3654

Compare the 1 with the ith (first) element in our 
sorted sublist.  2 is greater than 1, so 1 must 
come before 2.  Move the 2 to the right.
Decrement i.  Now i = 0.
Since i = 0, stop moving things.

36542 1

1



Insertion sort: method 2

36542

The 2, 4, 5, and 6 have been moved.
Now insert the 1 in its correct (i + 1) place.
We are guaranteed that the array (so far) is 
sorted.

1 36542

1



Insertion sort: method 2

1 36542

Add 1 to j.  j is now 6.
Pretend that the array is of length j.
Take the jth element out of the array and hold it 
in our temporary storage location.

1 6542 3



Insertion sort: method 2

1 6542

Set i to j – 1 (which is 5).
Compare the 3 with the ith (fifth) element in our 
sorted sublist.  6 is greater than 3, so 3 must 
come before 6.  Move the 6 to the right.
Decrement i.  Now i = 4.

1 6542 3

3



Insertion sort: method 2

1 6542

Compare the 3 with the ith (fourth) element in 
our sorted sublist.  5 is greater than 3, so 3 must 
come before 5.  Move the 5 to the right.
Decrement i.  Now i = 3.

1 6542 3

3



Insertion sort: method 2

1 6542

Compare the 3 with the ith (third) element in 
our sorted sublist.  4 is greater than 3, so 3 must 
come before 4.  Move the 4 to the right.
Decrement i.  Now i = 2.

1 6542 3

3



Insertion sort: method 2

1 6542

Compare the 3 with the ith (second) element in 
our sorted sublist.  2 is less than 3, so 3 must 
come after 2.  Stop moving things.

1 6542 3

3



Insertion sort: method 2

1 6542

The 4, 5, and 6 have been moved.
Now insert the 3 in its correct (i + 1) place.
We are guaranteed that the array (so far) is 
sorted.

1 65432

3



Insertion sort: method 2

1 65432

Add 1 to j.  j is now 7.
Oops!  j now exceeds n.  Exit from the outer 
loop, and return the sorted list.

1 65432
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Insertion-sort(A)

1 for j ← 2 to length(A)
2   do key ← A[j]
3      // Insert A[j] into the sorted

// sequence A[1..j - 1]
4      i ← j – 1
5      while i > 0 and A[i] > key
6         do A[i + 1] ← A[i]
7            i ← i – 1
8      A[i + 1] ← key



Insertion-sort(A)

Note that, as we go through the outer loop (the for
loop), we are guaranteed that the part of the array 
from element # 1 up through  element j – 1 is is 
sorted order.
We can state this as a formal loop invariant:
“At the start of each iteration of the for loop of 
lines 1-8, the subarray A[1..j-1] consists of the 
elements originally in A[1..j-1] but in sorted order.”



Loop invariants

We must show three things about a loop invariant:
Initialization: It is true prior to the first iteration 
of the loop.
Maintenance: If it is true before an iteration of the 
loop, it remains true before the next iteration.
Termination: When the loop terminates, the 
invariant gives us a useful property that helps show 
that the algorithm is correct.



Loop invariants

Initialization: It is true prior to the first iteration 
of the loop.

Is the array sorted prior to the first iteration of the 
loop?  
Yes.  The first iteration begins by assuming that a 
list of size 1 is already in sorted order, and starts off 
by assigning j a value of 2.  A list of size 1 is 
always in sorted order.



Loop invariants
Maintenance: If it is true before an iteration of the 
loop, it remains true before the next iteration.

If the array is sorted prior to an iteration of the 
loop, will that iteration preserve its sorted status ?  
Yes.  Our examination of the behavior of the inner 
loop shows that if the jth element of the array is out 
of order when entering the inner loop, then it will 
be in the correct order when exiting the loop.  The 
inner loop is basically all that the outer loop does 
during one iteration.



Loop invariants
Termination: When the loop terminates, the 
invariant gives us a useful property that helps show 
that the algorithm is correct.

What happens when the loop terminates?  Does 
that preserve the sorted order?
The loop terminates when j = n + 1.  Just prior to 
that point, while j = n,  all j (and thus all n) of the 
elements of the array are in sorted order.  So, yes, 
the termination condition of the loop preserves the 
sorted order of the array.



Analyzing algorithms

For purposes of analysis, we will assume that all of 
our algorithms are running on a RAM computer 
(generic random access machine), with no 
parallelization, no special instructions, capabilities, 
etc.



Analyzing algorithms

Running time: Assume that we write our algorithm 
in such a way that it has i lines (or steps), each of 
which takes a constant amount of time to execute 
on our RAM.  So, c1 is the time it takes to execute 
line 1, c2 is the time it takes to execute line 2, etc.  
Obviously, if there are no loops in our algorithm, 
its running time will be c1 + c2 + . . . ci.  A constant 
plus a constant plus a constant . . . equals a 
constant.  So the running time of any algorithm 
with no loops is a constant.



Analyzing algorithms

What if the algorithm has loops?
If the number of times the algorithm executes the 
loop is constant, then the running time of the 
algorithm is still a constant.  
However, the running time of most algorithms will 
depend upon the input.
If the number of times the algorithm executes the 
loop is proportional to the input, then the running 
time will not be a constant.



Analyzing algorithms

When we talk about the size of the input, we 
usually mean the number of items in the input.
However, for some problems the size may best be 
described in other terms.  For example,  to analyze 
a low-level algorithm for multiplying two integers, 
the size is  the number of bits it takes to represent 
the input. Another example is an algorithm for 
manipulating a graph; graphs have both edges and 
vertices, so the size of the input will be two 
numbers instead of one.



Insertion-sort(A)

1 for j ← 2 to length(A)
2   do key ← A[j]
3      // Insert A[j] into the sorted

// sequence A[1..j - 1]
4      i ← j – 1
5      while i > 0 and A[i] > key do
6         A[i + 1] ← A[i]
7         i ← i – 1
8      A[i + 1] ← key
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INSERTION-SORT(A) Cost Times

1 for j ← 2 to length(A) do c1 n

2 key ← A[j] c2 n - 1

3 // Insert A[j] into the sorted 
sequence A[1..j - 1]

0 n - 1

4 i ← j – 1 c4 n - 1

5 while i > 0 and A[i] > key do c5

6 A[i + 1] ← A[i] c6

7 i ← i – 1 c7

8 A[i + 1] ← key c8 n - 1



Insertion sort
Let’s look at the details of the running time of this 
algorithm.

“Cost” is some constant value that indicates the 
computation cost (e.g., in terms of CPU cycles, 
etc.) of the operation performed in a line of the 
algorithm.
“Times” will be the number of times a particular 
line of the algorithm will be executed.



Insertion sort
• Line 3 is a comment line, and comments are 
considered not to cost anything, since they will not 
actually be executed when a program runs.
• Line 1 begins an outer for loop.  All of the other 
lines are within this loop.
• Lines 2, 4, and 8 are directly under the for loop.  
The body of this outer loop will execute n–1 times 
(as j goes from 2 to n, where n = length(A)).  So 
lines 2,4, and 8 will execute n-1 times.
•Line 1 will be checked one extra time for the exit 
condition from the loop, so it executes n times.



Insertion sort
• Lines 5, 6 and 7 are within the inner while loop.  
The number of times they will be executed (called 
t) depends upon the value of j at the time the while
loop is entered.  The value of j is determined by the 
value of the for loop in line 1.
• So lines 6 and 7 will be executed
times. 
• Line 5 will be checked one extra time for the exit 
condition from the loop every time it is visited, so 
it executes                 times.
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Insertion sort
The total cost of insertion sort is:

The actual cost of insertion sort when used for any 
particular instance of the sorting problem depends 
upon the characteristics of that specific instance. 
For example, the cost of sorting a list with 100 
elements will have a greater cost than sorting a list 
with only 10 elements.
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Insertion sort
Moreover, the order in which the elements of the 
array are listed will affect the running time cost of 
insertion sort.  
For this algorithm the best case occurs when the 
array is already sorted.  
The worst case occurs when the array is in reverse 
order.
The average case occurs – well, most of the time.
These are the three performances of an algorithm 
we are normally interested in: best case, average 
case, and worst case.



Insertion sort
Best case:

The inner loop of our array starts off:
while i > 0 and A[i] > key

Do we ever have to do the body of this inner loop 
more than once, for each item in the array?  No, 
because A[i] is always < the key, and we will drop 
out of the inner loop before doing anything.

1 65432



Insertion sort

So the best case running time for insertion sort is:

This can be expressed as:

which can be reduced to:
an + b

which is a linear function of n.  So the best case 
performance of insertion sort is linear time.
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Insertion sort
Worst case:

The inner loop of our array starts off:
while i > 0 and A[i] > key

How many times do we have to do the body of this 
inner loop?  Ouch!  It’s i-1 steps each time through 
the loop.  So the 6th items requires 5 comparisons 
and moves, the 5th requires 4, the 4th requires 3, etc.

6 12345



Insertion sort

So the worst case running time for insertion sort is:

This is equivalent to:

which can be reduced to:
an2 + bn + c

which is a quadratic function of n
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Algorithm analysis
When we analyze an algorithm, we are often 
primarily interested in its worst-case performance.  
Why?
• The worst-case is an upper bound on the running 
time of an algorithm.  We know its performance 
can’t be any worse than that.
• For some algorithms, the worse case occurs fairly 
often.
• The average case performance is often about as 
bad as the worst case.



Algorithm analysis
Average case analysis is especially hard to do:
• What is an “average” input for a problem?
• Can’t just assume that all instances are equally 
likely.  Many businesses maintain databases in 
sorted order.  When a new item is added, the 
database must be resorted.  So, most instances of 
sorting occur when the database is already in 
nearly-sorted order, with only one item out of 
place.
• We sometimes can use a randomized algorithm to 
allow a probabilistic analysis.



Merge sort
Insertion sort used an incremental approach to 
sorting:  sort the smallest subarray (1 item), add 
one more item to the subarray, sort it, add one more 
item, sort it, etc.

Let’s think about how the merge sort works.  
Basically, it uses a divide-and-conquer approach, 
based on the concept of recursion.



Merge sort
Divide-and-conquer:
• Divide the problem into several subproblems.
• Conquer the subproblems by solving them 
recursively.  If the subproblems are small enough, 
solve them directly.
• Combine the solutions to the subproblems to get 
the solution for the original problem.



Merge sort
Divide-and-conquer:
• Divide the n-element sequence to be sorted into 
two subsequences of n/2 each.
• Conquer by sorting the subsequences recursively 
by calling merge sort again.  If the subsequences 
are small enough (of length 1), solve them directly.  
(Arrays of length 1 are already sorted.)
• Combine the two sorted subsequences by merging 
them to get a sorted sequence.



Merge sort
Note that the merge sort basically consists of 
recursive calls to itself.  The base case (which stops 
the recursion) occurs when a subsequence has a  
size of 1.
The combine step is accomplished by a call to an 
algorithm called Merge.

Here is what the algorithm for Merge-Sort looks 
like:



Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

A is the (sub)array when the procedure is called.
p, q, and r are indices numbering elements of the 

array such that p ≤ q ≤ r ; p is the lowest index 
and r is the highest index.



Merge
Without going into detail about how Merger-Sort 

works yet, let’s take a look at the Merge part.  
Merge works by assuming you have two 
already-sorted sublists and an empty array:

1 54

2 63



Merge

1 74 2 3∞ 9 ∞

Let’s assume we have a sentinel (infinity, which 
is guaranteed to be larger than the last item) at 
the end of each sublist which lets us know when 
we have hit the end of the sublist.



Merge

1 74 2 3∞ 9 ∞

p   q   q+1    r  

The two sublists are indexed from p to q (for the 
first sublist) and from q+1 to r for the second 
sublist.  There are (r – p) + 1 items in the two 
sublists combined, so we will need an output 
array of that size.



Merge

1 74 2

1

3∞ 9 ∞

Look at the first item in each subarray.  Choose 
the smallest item.

Move the chosen item to the output array.  



Merge

74 2

1 2

3∞ 9 ∞

Look at the first item in each subarray.  Choose 
the smallest item.

Move the chosen item to the output array.  



Merge

74

1 32

3∞ 9 ∞

Look at the first item in each subarray.  Choose 
the smallest item.

Move the chosen item to the output array.  



Merge

74

1 432

∞ 9 ∞

Look at the first item in each subarray.  Choose 
the smallest item.

Move the chosen item to the output array.  



Merge

7

1 7432

∞ 9 ∞

Look at the first item in each subarray.  Choose 
the smallest item.

Move the chosen item to the output array.  



Merge

1 97432

∞ 9 ∞

Look at the first item in each subarray.  Choose 
the smallest item.

Move the chosen item to the output array.  



Merge

1 97432

∞ ∞

We know that we have only n = (r – p) + 1  items.  
So, we will make only (r – p) + 1 moves. 
Here r = 1 and p = 6, and (6 – 1) + 1 = 6, so when 
we have made our 6th move we’re through.
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Merge
Assuming that the two sublists are in sorted order 

when they are passed to the Merge routine, is 
Merge guaranteed to output a sorted array?

Yes.  We can verify that each step of Merge 
preserves the sorted order that the two sublists 
already have.



Merge(A, p, q, r)
1 n1 ← (q – p) + 1
2 n2 ← (r – q)
3 create arrays L[1..n1+1] and R[1..n2+1]
4 for i ← 1 to n1 do
5 L[i] ← A[(p + i) -1]
6 for j ← 1 to n2 do
7 R[j] ← A[q + j]
8 L[n1 + 1] ← ∞
9 R[n2 + 1] ← ∞
10 i ← 1
11 j ← 1
12 for k ← p to r do
13 if L[I] <= R[j] 
14 then A[k] ← L[i]
15 i ←i + 1
16 else A[k] ← R[j]
17 j ← j + 1 



Analysis of Merge 
The loop in lines 12-17 of Merge is the heart of how 

Merge works.  They maintain the loop invariant:
• At the start of each iteration of the for loop of 

lines 12-17, the subarray A[p..k-1]contains the k 
- p smallest elements of L[1..n1+1] and 
R[1..n2+1], in sorted order.  Moreover, L[i] and 
R[j] are the smallest elements of their arrays that 
have not been copied back into A.



Analysis of Merge 
To prove that Merge is a correct algorithm, we must 

show that:
• Initialization: the loop invariant holds prior to 

the first iteration of the for loop in lines 12-17
• Maintenance: each iteration of the loop 

maintains the invariant
• Termination: the invariant provides a useful 

property to show correctness when the loop 
terminates



Initialization:

As we enter the for loop, k is set equal to p.  This 
means that subarray A[p..k-1] is empty.  Since 
k - p = 0, the subarray is guaranteed to contain 
the k - p smallest elements of L and R.  By 
lines 10 and 11, i = j = 1, so L[i] and R[j] are 
the smallest elements of their arrays that have 
not been copied into A.



Maintenance: 
As we enter the loop, we know that A[p..k-1] 

contains the k - p smallest elements of L and R.
Assume L[i] <= R[j].  Then:

L[i] is the smallest element not copied into A.
Line 14 will copy L[i] into A[k].
At this point the subarray A[p..k] will contain the k - p 

+ 1 smallest elements.
Incrementing k (in line 12) and i (in line 15) 

reestablishes the loop invariant for the next 
iteration.

Assume L[i] >= R[j].  Then:
Lines 16-17 maintain the loop invariant.



Termination:
The loop invariant states that subarray 

“A[p..k-1]contains the k - p smallest elements 
of L[1..n1+1] and R[1..n2+1], in sorted order.” 

When we drop out of the loop, k = r + 1.
So r = k – 1, and A[p..k-1] is actually A[p..r], which 

is the whole array.
The arrays L and R together contain n1 + n2 + 2 

elements.  From lines 1 and 2 we know that n1 + 
n2 = ((q – p) + 1) + ((r – q) = (r – p) + 1, and 
this is the number of all of the elements in the 
array.  The extra 2 is the two sentinel elements.



Merge sort
Now let’s look at Merge-Sort again:

Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Line 1 is our base case; we drop out of the 
recursive sequence of calls when p >= r.



Merge Sort
Given our Merge routine, we can now see how
Merge-Sort works. 
• Assume a list of length = 2m:

• Take an unsorted list as input.
• Split it in half.  Now you have two sublists.  
• Split those in half, and so on, until you have lists 

of length 1.
• Merge those into sublists of length 2, then merge 

those into sublists of length 4, etc.  Keep going 
until you have just one list left.

• That list is now sorted.



Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Let’s call Merge-Sort with an array of 4 elements: 
Merge-Sort(A, 1, 4), where p = 1 and r = 4.

Line 1:  p < r, so do the then part of the if
Line 2:  q ← (p+r)/2, which is 2
Line 3:  we call Merge-Sort(A, 1, 2)
WAIT HERE (let’s call our place Z) until we return 

from this call



Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Calling Merge-Sort(A, 1, 2)
Line 1:  p < r, so do the then part of the if
Line 2:  q ← (p+r)/2, which is 1
Line 3:  we call Merge-Sort(A, 1, 1)
WAIT HERE (let’s call our place Y) until we return 

from this call



Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Calling Merge-Sort(A, 1, 1)
Line 1:  p = r, so skip the then part of the if
Return from this call to Y



Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

We called Merge-Sort(A, 1, 2)
We have returned from our call in line 3
Line 4:  We call Merge-Sort(A, 2, 2)
WAIT HERE (let’s call our place X) until we return 

from this call



Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Calling Merge-Sort(A, 2, 2)
Line 1:  p = r, so skip the then part of the if
Return from this call to X



Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

We called Merge-Sort(A, 2, 2)
We have returned from our call in line 4
Line 5:  We call Merge(A, 1, 2, 2)
What does Merge do?



Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Step 5:  Merge(A, 1, 2, 2) :
• creates two temporary arrays of 1 element each
• copies A[1] and A[2] into these 2 arrays
• merges the elements in these two temporary 

arrays back into A[1..2] in sorted order
• returns from the call to Z



Merge sort
Merge-Sort(A, p, r)
1 if p < r
2 then {q ← (p+r)/2
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)}

Return from call to Merge-Sort(A, 1, 2) in Line 3.  
At this point half of our original array, A[1..2], 
is in sorted order.

Next we call Merge-Sort(A, 3, 4).  It will put 
A[3..4] into sorted order.

Line 5 will merge A[1..2] and A[3..4] into A[1..4] 
in sorted order.
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Analysis of Divide-and-Conquer algorithms 

The Merge-Sort algorithm contains a recursive call 
to itself.  When an algorithm contains a 
recursive call to itself, its running time often can 
be described by a recurrence equation, or 
recurrence.   

The recurrence equation describes the running time 
on a problem of size n in terms of the running 
time on smaller inputs.

We can use mathematical tools to solve the 
recurrence and provide bounds on the 
performance of the algorithm.



Analysis of Divide-and-Conquer algorithms 

A recurrence of a divide-and-conquer algorithm is 
based on its 3 parts: divide, conquer, and 
combine.

Let T(n) be the running time on a problem of size n.
If the problem is small enough, say n <= c, we can 

solve it in a straightforward manner, which takes 
constant time, which we write as Θ(1).

If the problem is bigger, we solve it by dividing the 
problem to get a subproblems, each of which is 
1/b the size of the original.  For Merge-Sort, 
both a and b are 2.



Analysis of Divide-and-Conquer algorithms 

Assume it takes D(n) time to divide the problem 
into subproblems.

Assume it takes C(n) time to combine the solutions 
to the subproblem into the solution for the 
original problem.

We get the recurrence:

( ) {=nT Θ(1) if n ≤ c

aT(n/b) + D(n) + C(n)  otherwise



Analysis of Merge-Sort 
Base case: n = 1.  Merge sort on an array of size 1 

takes constant time, Θ(1).
Divide: The Divide step of Merge-Sort just 

calculates the middle of the subarray.  This takes 
constant time.  So D(n) = Θ(1).

Conquer: We make 2 calls to Merge-Sort.  Each 
call handles ½ of the subarray that we pass as a 
parameter to the call.  The total time required is 
2T(n/2).

Combine: Running Merge on an n-element 
subarray takes Θ(n), so C(n) = Θ(n).



Analysis of Merge-Sort 
Here is what we get:

( ) {=nT Θ(1) if n = 1

2T(n/2) + Θ(1) + Θ(n)    if n > 1

By inspection, we can see that we can ignore the 
Θ(1) factor, as it is irrelevant compared to Θ(n).  
We can rewrite this recurrence as:  

( ) {=nT c if n = 1
2T(n/2) + c(n)    if n > 1



Analysis of Merge-Sort 

How much time will it take for the Divide step?
Let’s assume that n is some power of 2.
Then for an array of size n, it will take us log2n 

steps to recursively subdivide the array into 
subarrays of size 1.

Example: 8 = 23



Analysis of Merge-Sort 

Example: 8 = 23

Step 0:

Step 1:

Step 2:

Step 3:
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Analysis of Merge-Sort 
So, it took us log2n steps to divide the array all the 

way down into subarrays of size 1.  
As a result, we will have log2n + 1 (sub)arrays to 

deal with.  In our example, where n = 8 and 
log2n = 3, we will have to deal with arrays of 
size 1, 2, 4, and 8.  

Every time we Merge the arrays, it takes us n steps, 
since we have to put each array item into its 
proper position within each array.



Analysis of Merge-Sort 
Consequently, we will have log2n + 1 recursive calls 

of the Merge-Sort function, and each time we 
call Merge-Sort the Merge function will cost us 
n steps, times a constant value.

The total cost, then, can be expressed as:
cn(log2n + 1)

Multiplying this out gives:
cn(log2n) + cn

Ignoring the low-order term and the constant c 
gives:
Θ(n•log2n)



Conclusion
• Insertion Sort
• Merge Sort
• Analysis of Algorithms
• Proof of correctness
• Divide-and-conquer algorithms
• Recurrence relations
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