
Lecture 1
The Role of Algorithms in Computing

Sultan ALPAR
associate professor, IITU

s.alpar@iitu.edu.kz

Chapter 1 Topics

• Algorithms
• Algorithms as a Technology

Algorithms

Goals:
Learn techniques of algorithm design and analysis so
that you can:

• develop algorithms,
• show that they give the correct answer, and
• understand their efficiency

Algorithms

What is an algorithm?
• An algorithm is any well-defined computational

procedure that takes some value, or set of values, as
input and produces some value, or set of values, as
output. An algorithm is thus a sequence of
computational steps that transform the input into the
output. (CLRS, p. 5)

Algorithms

What is an algorithm?
• An algorithm is a tool for solving a well-specified

computational problem. The statement of the problem
specifies in general terms the desired input/output
relationship . The algorithm describes a specific
computational procedure for achieving that
input/output relationship. (CLRS, p. 5)

Algorithms

Formal definition of the sorting problem:

Input: A sequence of numbers

Output: A permutation (reordering)
of the input sequence such that

naaa ,,, 21

naaa ,,, 21

naaa 21

Algorithms

Instance: The input sequence <14, 2, 9, 6, 3> is an
instance of the sorting problem.

An instance of a problem consists of the input (satisfying
whatever constraints are imposed in the problem
statement) needed to compute a solution to the
problem.

Algorithms

Correctness: An algorithm is said to be correct if, for
every instance, it halts with the correct output. We say
that a correct algorithm solves the given computational
problem.

Algorithms as a Technology

Efficiency: Algorithms that solve the same problem can
differ enormously in their efficiency. Generally
speaking, we would like to select the most efficient
algorithm for solving a given problem.

Algorithms as a Technology

Time efficiency: When we talk about the efficiency of
an algorithm, we usually mean the time requirements
of the algorithm: how long would it take a program
executing this algorithm to solve the problem?

Algorithms as a Technology

Space efficiency: Space efficiency is usually an all-or-
nothing proposition; either we have enough space in
our computer’s memory to run a program
implementing a specific algorithm, or we do not. If we
have enough, we’re OK; if not, we can’t run the
program at all. Consequently, analysis of the space
requirements of a program tend to be pretty simple and
straightforward.

Algorithms as a Technology

Space efficiency:
Note that space requirements set a minimum lower

bound on the time efficiency of the problem.
Suppose that our data structure is a single-dimensioned

array with n = 100 elements in it. Let’s say that the
first step in our algorithm is to execute a loop that just
copies values into each of the 100 elements. Then our
algorithm must take at least 100 iterations of the loop.
So the running time of our algorithm is at least O(n),
just from setting up (initializing) our data structure!

Algorithms as a Technology

Time efficiency of two sorts:
Suppose we use insertion sort to sort a list of numbers.
Insertion sort has a time efficiency roughly equivalent
to c1 • n2. The value n is the number of items to be
sorted. The value c1 is a constant which represents the
overhead involved in running this algorithm; it is
independent of n.
Compare this to merge sort. Merge sort has a time
efficiency of c2 • n • lg n (where lg n is the same as
log2n).

Algorithms as a Technology

n Insertion sort - O(n2) Merge sort – O(n lg n)
4 16 8
8 64 24
16 256 64
32 1024 160
64 4096 384
128 16,394 896
256 65,536 2048
512 262,144 4608
1024 1,048,576 10,240
1,048,576 ~1,000,000,000,000 20,971,520

Algorithms as a Technology

Time efficiency of two sorts:
Do the two constants, c1 and c2, affect the result?
Yes, but only with low values of n.
Suppose that insertion sort is hand-coded in machine

language for optimal performance and its overhead is
very low, so that c1 = 2.

Now suppose that merge sort is written in Ada by an
average programmer and the compiler doesn’t do a
good job of optimization, so that c2 = 50.

Algorithms as a Technology

Time efficiency of two sorts:
To make things worse, suppose that insertion sort is run

on a machine that executes 1 billion instructions per
second, while merge sort is run on a slow machine that
executes only 10 million instructions per second.

Now let’s sort 1 million numbers:
insertion sort:

merge sort:

 .sec2000
sec/10

102
9

26

nsinstructio
nsinstructio

.sec100
sec/10

10lg1050
7

66

nsinstructio
nsinstructio

From E. D. Reilly and F. D.
Federighi, Pascalgorithms,
Boston: Houghton Mifflin,
1989, p. 501.

Conclusion

What does this mean for computer science?
It means that using efficient algorithms can be even more

important that building faster computers: more
efficient thinking beats more efficient hardware!

And this means that algorithms are definitely worth
studying.

